Assessment of Facial Homogeneity with Regard to Genealogical Aspects Based on Deep Learning Approach
Main Article Content
Abstract
The current research work encompasses the assessment of similarity based facial features of images with erected method so as to determines the genealogical similarity. It is based on the principle of grouping the closer features, as compared to those which are away from the predefined threshold for a better ascertainment of the extracted features. The system developed is trained using deep learning-oriented architecture incorporating these closer features for a binary classification of the subjects considered into genealogic non-genealogic. The genealogic set of data is further used to calculate the percentage of similarity with erected methods. The present work considered XX datasets from XXXX source for the assessment of facial similarities. The results portrayed an accuracy of 96.3% for genealogic data, the salient among them being those of father-daughter (98.1%), father-son(98.3%), mother-daughter(96.6%), mother-son(96.1%) genealogy in case of the datasets from “kinface W-I”. Extending this work onto “kinface W-II” set of data, the results were promising with father-daughter(98.5%), father-son(96.7%), mother-daughter(93.4%) and mother-son(98.9%) genealogy. Such an approach could be further extended to larger database so as to assess the genealogical similarity with the aid of machine-learning algorithms.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.