Human Emotion Perception Based on K-Nearest Neighbors Classifier
Main Article Content
Abstract
Emotions are the psychological stages of feeling that can be intertwined through circumstances, temperament, relationships, motivation, dispositions, etc.
This paper investigates the effect for the emotion-discriminating precision of Different wave levels of EEG signals and a particular number of channels.
Using various sets of EEG channels, the proposal classified affective states in the equivalence and excitability dimensions. To begin, DEAP normalized the pretreated hypothetical data. Following that, discrete wavelet transduction was used to divide the EEG into four bands, The scales used were the features of the K-nearest neighbor Algorithm entropy and energy algorithm.
The Classifier accuracy for channels (10-14-18 , 32 )was according to the gamma frequency in the valence dimension being 99.5313%, 99.6094%, 99.7656%, 99.6875%, 99.4531%, and in the arousal dimension 99.5313%, 99.7656% and 99.7656%. The gamma frequency grading accuracy is greater than the beta frequency of the alpha and theta frequency, and the accuracy increases the number for channels.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.