Covid-19 Future Predictions using Machine Learning Algorithms
Main Article Content
Abstract
The ongoing destructive pandemic of Coronavirus Disease (COVID-19) has been the biggest virus that affected more than 190 countries and territories across the world. It seems uncontrollable in many countries and some countries have taken and implemented proper safety measures to eradicate the virus and is under process. We have used machine learning-based prediction tools. As various machine learning algorithms have proved their importance for forecasting and making future decisions. This paper aims to study, analyze and visualize the spreading of the virus in India and the world considering confirmed cases, recovered cases, and fatalities and how in real-world situations we can use machine learning models. It helps to evaluate the spread and pattern of COVID-19 in India by performing Linear Regression, and Support Vector Machine and evaluating parameters using MAE & MSE score, which is the goodness of fit measure. In training a model, the selection of the best learning model is challenging as the data has anomalies because data is not standardized. Therefore, proper study and analysis of the data should be done so that it is easy to understand and act accordingly. Using datasets from Johns Hopkins University the data has been analyzed, obtained from January 22, 2020, till May 17, 2021, for the world. Using this analysis, we can predict the confirmed cases for the following 10 days. The result proves that Linear Regression is much more accurate than the Support Vector Machine.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.