A Multi Approach for the Analysis of Feature Selection using Data Gain and BAT Techniques on the Anomaly Detection
Main Article Content
Abstract
Every day, millions of people in many institutions communicate with each other on the Internet. The past two decades have witnessed unprecedented levels of Internet use by people around the world. Almost alongside these rapid developments in the internet space, an ever increasing incidence of attacks carried out on the internet has been consistently reported every minute. In such a difficult environment, Anomaly Detection Systems (ADS) play an important role in monitoring and analyzing daily internet activities for security breaches and threats. However, the analytical data routinely generated from computer networks are usually of enormous size and of little use. This creates a major challenge for ADSs, who must examine all the functionality of a certain dataset to identify intrusive patterns. The selection of features is an important factor in modeling anomaly-based intrusion detection systems. An irrelevant characteristic can lead to overfitting which in turn negatively affects the modeling power of classification algorithms. The objective of this study is to analyze and select the most discriminating input characteristics for the construction of efficient and computationally efficient schemes for an ADS. In the first step, a heuristic algorithm called IG-BA is proposed for dimensionality reduction by selecting the optimal subset based on the concept of entropy. Then, the relevant and meaningful features are selected, before implementing Number of Classifiers which includes: (1) An irrelevant feature can lead to overfitting which in turn negatively affects the modeling power of the classification algorithms. Experiment was done on CICIDS-2017 dataset by applying (1) Random Forest (RF), (2) Bayes Network (BN), (3) Naive Bayes (NB), (4) J48 and (5) Random Tree (RT) with results showing better detection precision and faster execution time. The proposed heuristic algorithm outperforms the existing ones as it is more accurate in detection as well as faster. However, Random Forest algorithm emerges as the best classifier for feature selection technique and scores over others by virtue of its accuracy in optimal selection of features.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.