SMS Spam Detection using Supervised Learning
Main Article Content
Abstract
Over the last decade, the growth of short message services has been rising. These text messages are more powerful for corporations than even SMS. This is because about 80 percent of sms remain unopened while 98 percent of smartphone users read theirs by the end of the day. Spam, which refers to any irrelevant text messages sent via mobile networks, has also gained popularity. For consumers, they are seriously irritating. Due to the geographical material, use of abbreviated words, the current Spam Detection techniques are more challenging than e-mail spam detection techniques , unfortunately very few of the existing research addresses these challenges. Much of the current research that has attempted to filter Spam has focused on features that were manually found. This paper aims to solve these concerns. Filtering is one of the most effective strategies among the methods developed to stop spam. Days of machine learning techniques are now used to process the spam SMS automatically at a very good rate. The goal of this research is to differentiate between ham and spam messages by developing an accurate and responsive model of classification that provides good accuracy with a low false positive rate
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.