Tampering Detection using Resampling Features and Convolution Neural Networks
Main Article Content
Abstract
The increased usage of image editing tools has resulted in the ease of manipulating multimedia data such as images. These manipulations affect the truthfulness and legitimacy of images, resulting in misinterpretation and may affect social stability. The image forensic technique has been utilized for detecting whether an image is tampered with using certain attacks such as splicing, copy-move, etc.This paper presents an efficient tampering detection method using resampling features (RSF) and Convolution neural network (CNN). In RSF-CNN, during preprocessing the image is divided into homogenous patches. Then, within each patch resampling features are extracted by exploiting affine transformation and Laplacian operator. Then, features extracted are aggregated for constructing descriptors using Convolution neural network. Extensive analysis is carried out for evaluating tampering detection and tampered region segmentationaccuracies of proposed RSF-CNN based tampering detection methodologies considering various distortions and post-processing attacks such as joint photographic expert group (JPEG) compression, scaling, rotations, noise additions, and multiple manipulations. From the result achieved it can be seen the RSF-CNN based tampering detection model achieves much better accuracies than existing tampering detection methodologies.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.