Analyzing and Forecasting of Electricity Consumption by Integration of Autoregressive Integrated Moving Average Model with Neural Network on Smart Meter Data
Main Article Content
Abstract
Smart metering is a recently developed research area over the globe and it appears to be a remedy for increasing prices of electricity. Electricity consumption forecasting is an essential process in offering intelligence to smart girds. Rapid and precise forecasting allows a utility provider to plan the resources and also to take control actions to balance the electricity supply and demand. The customers will advantage from the metering solutions by a greater understanding of their own energy utilization and forthcoming projections, allowing them to effectively manage the cost of their consumption. In this view, this paper presents an Integration of Autoregressive Integrated Moving Average (ARIMA) Model with Neural Network (NN) for Electricity Consumption Forecasting using Smart Meter Data. As the time series data often does not hold linear as well as nonlinear patterns, ARIMA or NN models are not enough to model and predict the time series data. The ARIMA-NN model will be trained using the data and generates a model. Afterward, the generated model can be utilized to predict the electricity consumption by the application of new building data. The proposed ARIMA-NN model is evaluated and the simulation outcome strongly pointed out its superior performance over the compared methods. The presented model has obtained effective testing performance with the MAPE of 25.53, an accuracy of 48.38, and MSE of 0.21.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.