Study and analyze the eigenvalues and eigenvectors of a square matrix and study their applications through mathematical linear effects
Main Article Content
Abstract
In this paper we will investigate what properties are intrinsic to a matrix, or its associated linear application. As we will see, the fact that there are many bases in a vector space makes the expression of matrices or linear applications relative: it depends on which reference base we take. However, there are elements associated with this matrix, which do not depend on the reference base or bases that we choose, for example: a null spaces and a column spaces of a matrix, and their respective dimensions. The eigen values of matrix isa root of a character polynomial. Find a eigenvalue of matrix is equivalent to finding a rootof its polynomial. For matrices of size n ≥ 5, there does not generally existclosed expressions for the roots of the characteristic polynomial based on primary expressions (additions, subtractions, multiplications, divisions and roots). This result implies that the methods to find the valuesof a matrix must be iterativeOne way to calculate the eigen values would be to calculate the roots of thecharacteristic polynomial using a numerical method of calculating roots, like roots in Matlab. Roots in Python. But find the roots of a polynomial is usually a poorly conditioned problem. The conditioning of a problem has not been defined, but a wrong problemconditioned is a problem for which a small change in the data can induce an uncontrolled change in the results.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.