An Analytical Study On Forecasting Exchange Rate In The Philippines Using Multi-Layer Feed Forward Neural Network
Main Article Content
Abstract
Exchange Rate is one of the economic indicators in the Philippines. It is the value of the nation’s currency versus the currency of another country or economic zone. This study aims to forecast the monthly Exchange Rate (y) of the Philippines from November 2018 to December 2023 using Multiple Linear Regression and Multi-Layer Feed Forward Neural Network. The researchers investigate the behaviour of each independent variables – Inflation Rate (x1), Balance of Payments (x2), Interest Rate (x3), Producer’s Price Index (x4), Export (x5), Import (x6), Money Supply (x7), and Consumer’s Price Index (x8) from Philippine Statistics Authority (PSA) starts from January 2007 up to October 2018. Multiple Linear Regression (MLR) was used to identify significant predictors among these independent variables. The Exchange Rate (y) had undergone first difference transformation. Upon running the regression analysis, it has concluded that only two independent variables are significant predictors, namely: Balance of Payments (x2) and Import (x6). Through these significant predictors, the MLR model was formulated. On the other hand, Multi-Layer Feed forward Neural Network (MFFNN) was also used to determine the forecasted values of Exchange Rate (y) for the next five years (2018-2023) given the said independent variables and obtained a model. The researchers compared the model of Multiple Linear Regression and Multi-Layer Feed Forward Neural Network by evaluating the forecasting accuracy of each method.It was concluded that Multi-Layer Feed forward Neural Network is the best fitting model for forecasting the
Exchange rate (y) in the Philippines. This paper will serve as a tool of awareness for the government to forsee the trend of Exchange Rate in the Philippines on the next five years (2018-2023) for Monetary Policy making and to prevent the possible depreciation of peso vs. dollar.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.