IMAGE-GUIDED SYNTHESIS REVEALS POTENT BLOOD-BRAIN BARRIER PERMEABLE HISTONE DEACETYLASE INHIBITORS

Main Article Content

KALPANA GANTALA
GOVARDHAN SREENANCHA

Abstract

The blood-brain barrier (BBB) penetration of numerous histone deacetylase (HDAC) inhibitors, which are employed to investigate and treat brain illnesses, has been found to be low in recent research. The high doses required to achieve therapeutic efficacy may be explained by inadequate brain penetrance in addition to the observed low HDAC potency and selectivity. We present here the synthesis and assessment of a new class of highly potent, bloodbrain barrier permeable HDAC inhibitors for central nervous system (CNS) applications, based on an image-guided methodology that involves radiolabeling and parallel synthesis of several compounds based on the benzamide HDAC inhibitor MS-275 as a template. Rapid carbon-11 tagging and PET imaging in the baboon model were used to optimize BBB penetration. The imaging-derived data on BBB penetration from each chemical was then fed back into the design process. After analyzing 17 different compounds, it was discovered that some of them had high binding affinities and BBB permeabilities. A basic benzylic amine was a crucial component in this benzamide series that conferred BBB penetration. The compounds demonstrated an inhibitory effect of 1-100 nM on recombinant human HDAC1 and HDAC2. In the brain, three of the carbon-11 labeled aminomethyl benzamide derivatives demonstrated considerable regional binding heterogeneity (high in the thalamus and cerebellum) and high BBB penetration (∼0.015%ID/cc). When combined, these methods have produced a plan and a forecasting model for creating very strong and BBBpermeable HDAC inhibitors for use in the central nervous system as well as new candidate chemicals for small molecule probes and medications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
GANTALA, K. ., & SREENANCHA, G. . (2019). IMAGE-GUIDED SYNTHESIS REVEALS POTENT BLOOD-BRAIN BARRIER PERMEABLE HISTONE DEACETYLASE INHIBITORS. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(3), 1230–1244. https://doi.org/10.61841/turcomat.v10i3.14496
Section
Articles

References

(1) Bernal, A. J., and Jirtle, R. L. (2010) Epigenomic Disruption: The Effects of Early

Developmental Exposures. Birth Defects Res., Part A 88, 938−944.

(2) Bierne, H., Hamon, M., and Cossart, P. (2012) Epigenetics and Bacterial Infections. Cold

Spring Harbor Perspect. Med. 2,x DOI: 10.1101/cshperspect.a010272.

(3) Majumdar, G., Adris, P., Bhargava, N., Chen, H., and Raghow, R. (2012) Pan-Histone

Deacetylase Inhibitors Regulate Signaling Pathways Involved in Proliferative and ProInflammatory Mechanisms in H9c2 Cells. BMC Genomics 13, 709−728.

(4) Esteller, M. (2007) Cancer Epigenomics: DNA Methylomes and Histone-Modification

Maps. Nat. Rev. Genet. 8, 286−298.

(5) Tsankova, N., Renthal, W., Kumar, A., and Nestler, E. J. (2007) Epigenetic Regulation in

Psychiatric Disorders. Nat. Rev. Neurosci. 8, 355−367.

(6) Hyman, S. E. (2012) Target Practice: Hdac Inhibitors for Schizophrenia. Nat. Neurosci.

, 1180−1181.

(7) Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., and Pazdur, R. (2007) FDA

Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T-Cell

Lymphoma. Oncologist 12, 1247−1252.

(8) Ramaswamy, B., Fiskus, W., Cohen, B., Pellegrino, C., Hershman, D. L., Chuang, E.,

Luu, T., Somlo, G., Goetz, M., Swaby, R., Shapiro, C. L., Stearns, V., Christos, P., EspinozaDelgado, I., Bhalla, K., and Sparano, J. A. (2012) Phase I-II Study of Vorinostat Plus

Paclitaxel and Bevacizumab in Metastatic Breast Cancer: Evidence for VorinostatInduced

Tubulin Acetylation and Hsp90 Inhibition in Vivo. Breast Cancer Res. Treat. 132,

−1072.

(9) Lee, E. Q., Puduvalli, V. K., Reid, J. M., Kuhn, J. G., Lamborn, K. R., Cloughesy, T. F.,

Chang, S. M., Drappatz, J., Yung, W. K. A., Gilbert, M. R., Robins, H. I., Lieberman, F. S.,

Lassman, A. B., McGovern, R. M., Xu, J. H., Desideri, S., Ye, X. B., Ames, M. M., EspinozaDelgado, I., Prados, M. D., and Wen, P. Y. (2012) Phase I Study of Vorinostat in Combination

with Temozolomide in Patients with High-Grade Gliomas: North American Brain Tumor

Consortium Study 04−03. Clin. Cancer Res. 18, 6032−6039.

(10) Yardley, D. A., Ismail-Khan, R. R., Melichar, B., Lichinitser, M., Munster, P. N., Klein,

P. M., Cruickshank, S., Miller, K. D., Lee, M. J., and Trepel, J. B. (2013) Randomized Phase

II, Double-Blind, PlaceboControlled Study of Exemestane with or without Entinostat in

Postmenopausal Women with Locally Recurrent or Metastatic Estrogen Receptor-Positive

Breast Cancer Progressing on Treatment with a Nonsteroidal Aromatase Inhibitor. J. Clin.

Oncol. 31, 2128− 2135.

(11) Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D., and

Rumbaugh, G. (2010) Inhibitors of Class 1 Histone Deacetylases Reverse Contextual

Memory Deficits in a Mouse Model of Alzheimer’s Disease. Neuropsychopharmacol. 35,

−880.

(12) Golden, S. A., Christoffel, D. J., Heshmati, M., Hodes, G. E., Magida, J., Davis, K.,

Cahill, M. E., Dias, C., Ribeiro, E., Ables, J. L., Kennedy, P. J., Robison, A. J., GonzalezMaeso, J., Neve, R. L., Turecki, G., Ghose, S., Tamminga, C. A., and Russo, S. J. (2013)

Epigenetic Regulation of Rac1 Induces Synaptic Remodeling in Stress Disorders and

Depression. Nat. Med. 19, 337−344.

(13) Abe, T., and Zukin, R. S. (2008) Epigenetic Targets of Hdac Inhibition in

Neurodegenerative and Psychiatric Disorders. Curr. Opin. Pharmacol. 8, 57−64.

(14) Kazantsev, A. G., and Thompson, L. M. (2008) Therapeutic Application of Histone

Deacetylase Inhibitors for Central Nervous System Disorders. Nat. Rev. Drug Discovery 7,

−868.

(15) Price, S., and Dyke, H. J. (2007) Histone Deacetylase Inhibitors: An Analysis of Recent

Patenting Activity. Expert Opin. Ther. Pat. 17, 745−765.

(16) Kim, S. W., Hooker, J. M., Otto, N., Win, K., Muench, L., Shea, C., Carter, P., King, P.,

Reid, A. E., Volkow, N. D., and Fowler, J. S. (2013) Whole-Body Pharmacokinetics of Hdac

Inhibitor Drugs, Butyric Acid, Valproic Acid and 4-Phenylbutyric Acid Measured with

Carbon-11 Labeled Analogs by Pet. Nucl. Med. Biol. 40, 912−918.

(17) Hooker, J. M., Kim, S. W., Alexoff, D., Xu, Y. W., Shea, C., Reid, A., Volkow, N., and

Fowler, J. S. (2010) Histone Deacetylase Inhibitor MS-275 Exhibits Poor Brain Penetration:

Pharmacokinetic Studies of [ 11C]MS-275 Using Positron Emission Tomography. ACS

Chem. Neurosci. 1, 65−73.

(18) Hanson, J. E., La, H., Plise, E., Chen, Y. H., Ding, X., Hanania, T., Sabath, E. V.,

Alexandrov, V., Brunner, D., Leahy, E., Steiner, P., Liu, L., Scearce-Levie, K., and Zhou, Q.

(2013) SAHA Enhances Synaptic Function and Plasticity in Vitro but Has Limited Brain

Availability in Vivo and Does Not Impact Cognition. PLoS One 8, e69964.

(19) Schreiber, S. L. (2011) Organic Synthesis toward SmallMolecule Probes and Drugs.

Proc. Natl. Acad. Sci. U.S.A. 108, 6699− 6702.

(20) Kim, J. Y., Shen, S., Dietz, K., He, Y., Howell, O., Reynolds, R., and Casaccia, P. (2010)

HDAC1 Nuclear Export Induced by Pathological Conditions Is Essential for the Onset of

Axonal Damage. Nat. Neurosci. 13, 180−189.

(21) Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J.,

Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R., and Tsai, L. H. (2009) HDAC2 Negatively Regulates Memory Formation and Synaptic

Plasticity. Nature 459, 55−60.

(22) Graff, J., Rei, D., Guan, J. S., Wang, W. Y., Seo, J., Hennig, K. M., Nieland, T. J., Fass,

D. M., Kao, P. F., Kahn, M., Su, S. C., Samiei, A., Joseph, N., Haggarty, S. J., Delalle, I., and

Tsai, L. H. (2012) An Epigenetic Blockade of Cognitive Functions in the Neurodegenerating

Brain. Nature 483, 222−226. ACS Chemical Neuroscience Research Article 595

dx.doi.org/10.1021/cn500021p | ACS Chem. Neurosci. 2014, 5, 588−596

(23) Kortagere, S., Chekmarev, D., Welsh, W. J., and Ekins, S. (2008) New Predictive

Models for Blood-Brain Barrier Permeability of DrugLike Molecules. Pharm. Res. 25,

−1845. (24) Syvanen, S., Lindhe, O., Palner, M., Kornum, B. R., Rahman, O.,

Langstrom, B., Knudsen, G. M., and Hammarlund-Udenaes, M. (2009) Species Differences

in Blood-Brain Barrier Transport of Three Positron Emission Tomography Radioligands with

Emphasis on Pglycoprotein Transport. Drug Metab. Dispos. 37, 635−643.

(25) Fan, Y., Unwalla, R., Denny, R. A., Di, L., Kerns, E. H., Diller, D. J., and Humblet, C.

(2010) Insights for Predicting Blood-Brain Barrier Penetration of Cns Targeted Molecules

Using Qspr Approaches. J. Chem. Inf. Model. 50, 1123−1133.

(26) Kattar, S. D., Surdi, L. M., Zabierek, A., Methot, J. L., Middleton, R. E., Hughes, B.,

Szewczak, A. A., Dahlberg, W. K., Kral, A. M., Ozerova, N., Fleming, J. C., Wang, H.,

Secrist, P., Harsch, A., Hamill, J. E., Cruz, J. C., Kenific, C. M., Chenard, M., Miller, T. A.,

Berk, S. C., and Tempest, P. (2009) Parallel Medicinal Chemistry Approaches to Selective

HDAC1/HDAC2 Inhibitor (SHI-1:2) Optimization. Bioorg. Med. Chem. Lett. 19,

−1172. (27) Marazano, C., Maziere, M., Berger, G., and Comar, D. (1977) Synthesis of

Methyl Iodide-11C and Formaldehyde-11C. Int. J. Radiat. Appl. Instrum. A 28, 49−52.

(28) Link, J. M., Krohn, K. A., and Clark, J. C. (1997) Production of [ 11C]Ch3I by Single

Pass Reaction of [11C]Ch4 with I2. Nucl. Med. Biol. 24, 93−97.

(29) Larsen, P., Ulin, J., Dahlstrøm, K., and Jensen, M. (1997) Synthesis of

C]Iodomethane by Iodination of [11C]methane. Appl. Radiat. Isot. 48, 153−157.

(30) Jewett, D. M. (1992) A Simple Synthesis of [11C]Methyl Triflate. Int. J. Radiat. Appl.

Instrum. A 43, 1383−1385.

(31) Le Bars, D., Luthra, S. K., Pike, V. W., and Duc, C. L. (1987) The Preparation of a

Carbon-11 Labelled Neurohormone–[ 11C]- Melatonin. Int. J. Radiat. Appl. Instrum. A 38,

−1077. (32) Methot, J. L., Chakravarty, P. K., Chenard, M., Close, J., Cruz, J. C.,

Dahlberg, W. K., Fleming, J., Hamblett, C. L., Hamill, J. E., Harrington, P., Harsch, A.,

Heidebrecht, R., Hughes, B., Jung, J., Kenific, C. M., Kral, A. M., Meinke, P. T., Middleton,

R. E., Ozerova, N., Sloman, D. L., Stanton, M. G., Szewczak, A. A., Tyagarajan, S., Witter,

D. J., Secrist, J. P., and Miller, T. A. (2008) Exploration of the Internal Cavity of Histone

Deacetylase (HDAC) with Selective HDAC1/HDAC2 Inhibitors (SHI-1:2). Bioorg. Med.

Chem. Lett. 18, 973−978.

(33) el-Beltagi, H. M., Martens, A. C., Lelieveld, P., Haroun, E. A., and Hagenbeek, A. (1993)

Acetyldinaline: A New Oral Cytostatic Drug with Impressive Differential Activity against

Leukemic Cells and Normal Stem Cells–Preclinical Studies in a Relevant Rat Model for

Human Acute Myelocytic Leukemia. Cancer Res. 53, 3008−3014.

(34) Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A.,

Breslow, R., and Pavletich, N. P. (1999) Structures of a Histone Deacetylase Homologue

Bound to the Tsa and Saha Inhibitors. Nature 401, 188−193.

(35) Wang, D. F., Wiest, O., Helquist, P., Lan-Hargest, H. Y., and Wiech, N. L. (2004) On the

Function of the 14 a Long Internal Cavity of Histone Deacetylase-Like Protein: Implications

for the Design of Histone Deacetylase Inhibitors. J. Med. Chem. 47, 3409−3417.

(36) Hendricks, J. A., Keliher, E. J., Marinelli, B., Reiner, T., Weissleder, R., and Mazitschek,

R. (2011) In Vivo Pet Imaging of Histone Deacetylases by F-18-Suberoylanilide Hydroxamic

Acid (F18-Saha). J. Med. Chem. 54, 5576−5582.

(37) Zeglis, B. M., Pillarsetty, N., Divilov, V., Blasberg, R. A., and Lewis, J. S. (2011) The

Synthesis and Evaluation of N-1-(4-(2-[F-18]- Fluoroethyl)Phenyl)-N-8-

Hydroxyoctanediamide ([F-18]-Fesaha), a Pet Radiotracer Designed for the Delineation of

Histone Deacetylase Expression in Cancer. Nucl. Med. Biol. 38, 683−696.

(38) Seo, Y. J., Muench, L., Reid, A., Chen, J., Kang, Y., Hooker, J. M., Volkow, N. D.,

Fowler, J. S., and Kim, S. W. (2013) Radionuclide Labeling and Evaluation of Candidate

Radioligands for Pet Imaging of Histone Deacetylase in the Brain. Bioorg. Med. Chem. Lett.

, 6700− 6705. (39) Shuiyu, L., Zhang, Y., Kalin, J., Liow, J.-S., Gladding, R., L, Innis, R.

B., Koziokowski, A. P., and Pike, V. W. (2013) Synthesis and Evaluation of [Methyl -

c]Kb631 − a Candidate Radioligand for Histone Deacetylase Isozyme 6 (Hdac6). J.

Labelled Compd. Radiopharm. 56, S319.

(40) Hooker, J. M., Xu, Y., Schiffer, W., Shea, C., Carter, P., and Fowler, J. S. (2008)

Pharmacokinetics of the Potent Hallucinogen, Salvinorin a in Primates Parallels the Rapid

Onset and Short Duration of Effects in Humans. NeuroImage 41, 1044−1050.

(41) Riva, L., Blaney, S. M., Dauser, R., Nuchtern, J. G., Durfee, J., McGuffey, L., and Berg,

S. L. (2000) Pharmacokinetics and Cerebrospinal Fluid Penetration of CI-994 (nacetyldinaline) in the Nonhuman Primate. Clin. Cancer Res. 6 (3), 994−997.

(42) Ertl, P., Rohde, B., and Selzer, P. (2000) Fast Calculation of Molecular Polar Surface

Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug

Transport Properties. J. Med. Chem. 43, 3714−3717.

(43) Schroeder, A., Lewis, M. C., Fass, D. M., Wagner, F. F., Zhang, Y. L., Hennig, K. M.,

Gale, J., Zhao, W. N., Reis, S., Barker, D. D., Berry-Scott, E., Kim, S. W., Clore, E. L.,

Hooker, J. M., Holson, E. B., Haggarty, S. J., and Petryshen, T. L. (2013) A Selective Hdac

/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior

in Two Mood-Related Tests. PLoS One 8, e71323.

(44) Chou, C. J., Herman, D., and Gottesfeld, J. M. (2008) Pimelic Diphenylamide 106 Is a

Slow, Tight-Binding Inhibitor of Class I Histone Deacetylases. J. Biol. Chem. 283,

−35409.

(45) Lauffer, B. E., Mintzer, R., Fong, R., Mukund, S., Tam, C., Zilberleyb, I., Flicke, B.,

Ritscher, A., Fedorowicz, G., Vallero, R., Ortwine, D. F., Gunzner, J., Modrusan, Z.,

Neumann, L., Koth, C. M., Lupardus, P. J., Kaminker, J. S., Heise, C. E., and Steiner, P.

(2013) Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability. J. Biol. Chem. 288,

−26943.

(46) Bantscheff, M., Hopf, C., Savitski, M. M., Dittmann, A., Grandi, P., Michon, A. M.,

Schlegl, J., Abraham, Y., Becher, I., Bergamini, G., Boesche, M., Delling, M., Dumpelfeld,

B., Eberhard, D., Huthmacher, C., Mathieson, T., Poeckel, D., Reader, V., Strunk, K.,

Sweetman, G., Kruse, U., Neubauer, G., Ramsden, N. G., and Drewes, G. (2011)

Chemoproteomics Profiling of Hdac Inhibitors Reveals Selective Targeting of Hdac

Complexes. Nat. Biotechnol. 29, 255−265.

(47) Wang, Y., Zhang, Y.-L., Hennig, K., Gale, J. P., Hong, Y., Cha, A., Riley, M., Wagner, F.,

Haggarty, S. J., Holson, E., and Hooker, J. (2013) Class I HDAC Imaging Using [3 H]CI-994

Autoradiography. Epigenetics 8, 756−764.

(48) Di, L., Rong, H. J., and Feng, B. (2013) Demystifying Brain Penetration in Central

Nervous System Drug Discovery. J. Med. Chem. 56, 2−12.

(49) Katragadda, M., Magotti, P., Sfyroera, G., and Lambris, J. D. (2006) Hydrophobic Effect

and Hydrogen Bonds Account for the Improved Activity of a Complement Inhibitor,

Compstatin. J. Med. Chem. 49, 4616−4622.