Effective Procedure to Predict Rainfall Conditions using Hybrid Machine Learning Strategies
Main Article Content
Abstract
In the present information technology stream supports many natural disaster prediction schemes to save several people from disaster scenarios. In such case, rainfall prediction and analysis is the most important concern to take care as well as the prediction of high rainfall saves many individual's life and their assets. This kind of rainfall prediction schemes provides a facilitation to take respective precautions to avoid huge damages further. The rainfall predictions are categorized into two different variants such as Limited Period Rainfall Prediction and the long period Continuous Rainfall Prediction. Several past analysis and literatures provide accurate predictions for limited period rainfall but the major problem is to identify or predict the continuous long period rainfall. This kind of drawbacks leads many researchers to work on this domain and predict the rainfall status exactly for both limited period as well as long period continues rainfall. In this paper, a new hybrid machine learning strategy is implemented to predict the rainfall status exactly, in which the proposed methodology is named as Intense Neural Network Mining (INNM). This proposed approach of INNM analyze the rainfall prediction scenario based on two different machine learning logics such as Back Propagation Neural Network and the Rapid Miner. The general machine learning algorithms train the machine with respect to the dataset features and predict the result based on testing input. In this approach two different variants of machine learning principles are utilized to classify the resulting nature with better accuracy levels and cross-validations are providing best probabilistic results in outcome. And these two logics are integrated together to produce a new hybrid machine learning strategy to predict the rainfall status exactly and save human life against disasters. In this paper, a novel dataset is utilized from Regional Meteorological Centre Chennai to predict the rainfall summary in clear manner and the summarization of specific dataset is described on further sections. The proposed approach of INNM assures the resulting accuracy levels around 96.5% in prediction with lowest error ratio of 0.04% and the resulting portion of this paper provides a proper proof of this outcome in graphical manner.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.