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Abstract: Anomaly detection in Prognostic and Health Management (PHM) domain by exploiting the information 

from deep learning uncertainty is presented in this paper. The behaviour of the uncertainty is monitored by 
cumulative sum (CUSUM) anomaly detection to detect abrupt changes in uncertainty, which translates the 

transition from healthy state to deterioration state. A probabilistic Long Short-Term Memory (LSTM) neural 

network is employed to predict the Remaining Useful Life (RUL) sequence distributions of engineered system.  A 
case study of turbofan engines prognostic is presented to demonstrate the ability of this method. The proposed 

technique shows excellent result in term of Root Mean Square Error (RMSE) measure between ground truth 
anomaly and predicted anomaly and good result in scoring metric that evaluates the combination of early and 

accuracy of anomaly detection compared to the ground truth.  

Keywords: Changepoint Detection, Anomaly Detection, Deep Learning Uncertainty, PHM, CMAPSS 

 

1. Introduction  

Engineered systems are vital for industrial operation. They ensure industrial process to be carried out as it 

should, adding value to products or services that is finally translated into financial gain. Downtime of these 

systems could result to issues related to safety, security as well as monetary to the organization. Efforts to improve 

reliability and availability of these machines have been undertaken by both industrial players and researchers, 

giving birth to various dedicated reliability engineering areas such as Multi State System (MSS) reliability and 

Human Reliability Engineering (HRA).  

In recent decades, Prognostic and Health Management (PHM) has provided organizations with supports to 

manage the health condition of engineered system. PHM enables the improvement of reliability, safety, security as 

well as reducing the cost of maintenance in industrial context [1,2]. PHM activities consist of failure diagnostic, 

prognostic, and anomaly detection. Failure diagnostic is the activity of searching the root cause of failure while 

failure prognostic is the task of calculating the remaining useful life, i.e., the operational time of assets before 

failure. Anomaly detection, on the other hand, is a process to identify outliers in data points or events which 

deviate from a dataset’s normal behaviour [3].  

1.1. Anomaly Detection Techniques 

Data anomaly can be divided into several categories: point anomaly, contextual anomaly, and collective 

anomalies. Point anomaly refers to individual point that is different from the rest of the data. Contextual anomaly 

points to data that is considered anomalous in specific context. Collective anomaly relates to manifestation of 

anomaly caused by a collection of data rather than individual data [3]. 

[4] presents an overview of anomaly detection techniques where 7 classes of method are described: 

classification-based (neural network, Bayes network, Support Vector Machine), Nearest Neighbour-based (K-

Nearest Neighbour, relative density), clustering-based, statistical-based, information-theoretic-based, spectral-

based and graph-based techniques.  

1.2. Uncertainty-Based Anomaly Detection 

Most research in deep learning applications are based on point estimates prediction. However, this is only 

experimental and cannot be employed in real world situation due to the absence of uncertainty quantification, 

which is vital for users to evaluate and trust the prediction. Uncertainty related to the quality of input data is called 

Aleatoric uncertainty. This kind of uncertainty occurs when data is contaminated with noise, stochasticity as well 

as error of acquisition.  

In prognostic works, particularly when dealing with healthy-degradation-failure states, this uncertainty is 

expected to be relatively stable in healthy state, becomes suddenly unstable (increasing or dipping) at the 

degradation start point, before becoming stable again at the failure state. The uncertainty is supposed to be quite 

stable in the healthy and failure states as the variability of the predicted RUL sequence is low in these states. In 
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the degradation state however, the uncertainty becomes abruptly unstable due to the transition between healthy-

degradation and degradation-failure states. By monitoring the uncertainty behaviour between states, this instability 

can be exploited as an indicator for anomaly. Using deep learning, this instability can be amplified if the model is 

only trained with healthy part of the training data and tested with normal testing data. This is due to the model not 

recognizing the deterioration state of testing data, resulting to increase of prediction uncertainty.  

The change of uncertainty level between states can be categorized as a change point detection (CPD) problem. 

Specifically, a time series CPD problem in this case. In CPD, the objective is to locate abrupt changes in data 

when a property of the time series changes [5]. [5] summarizes 2 classes of techniques available for time series 

CPD: supervised methods that maps input to target data [6] and unsupervised ones which comprise of likelihood 

ratio methods [7,8], subspace model methods [9,10], probabilistic methods [11,12], kernel-based methods [13,14], 

graph-based methods [15,16], and clustering methods [17,18]. 

In this paper, an unsupervised and statistical-based CUSUM anomaly detection method is applied to identify 

anomaly by exploiting the change in behaviour in prediction uncertainty. This paper claims to be the first work in 

anomaly detection utilizing the information of deep learning uncertainty behaviour. A case study of turbofan 

engines prognostic using probabilistic LSTM is employed to demonstrate the ability of this method.  

2. Related Literature 

Clustering technique is particularly popular in anomaly detection. In [19], anomaly detection for power 

electronic converters based on Principal Component Analysis (PCA) and K-Means clustering where healthy data 

and anomalous ones are identified from their clusters. PCA is used for feature extraction while k-means clustering 

with singular-value-weighted Euclidean distance is employed to define the healthy clusters. The same clustering 

technique is employed in [20] where anomaly in pressurized water reactor is detected using Coil current data 

clusters, that is classified as normal, mid-normal and off normal clusters. A semi-supervised Support Vector Data 

Description (SVDD) with negative samples (NSVDD) fault detection technique for rolling bearing element is 

proposed in [21]. The NSVDD model isolates the healthy and faulty data by using the Cyclostationary (CS) 

indicators to build the feature space and fits a hyper-sphere to calculate the Euclidean distances. In [22], K-Means 

clustering, and fuzzy modelling are used to detect anomaly of auxiliary marine diesel engine by identifying 

outliers. Additionally, the Event Score, that differentiates between real anomaly or false alarm is calculated from 

Local Outlier Factor (LOF) and Fuzzy membership function. 

Supervised anomaly detection is another active research domain. Anomaly detection based on the difference 

between the measured and the predicted values of the AC power production for photovoltaic system is proposed in 

[23]. A threshold based on Hourly Lower Limit (HLL) and Hourly Upper Limit (HUL) are defined from the 

normal operating condition's standard deviation. In [24], Thus, the monitoring methodology by artificial neural 

network (ANN) to detect anomalies in the energy consumption performance of a compressed air generation 

system is described. The use of ANNs allows an accurate characterization of the system in a healthy state. Then, 

by comparing the model prediction and the actual energy consumption, residuals are calculated and plotted in a 

control chart. Anomaly detection for railway propulsion control systems is proposed in [25] by using Decision 

Tree algorithm for unsupervised learning and Naive Bayes Kernel and Ensemble Subspace KNN for supervised 

learning.  

Changepoint detection works are equally important. An anomaly triggered-RUL estimation based on 

Cumulative Sum (CUSUM) control chart is proposed in [26] to detect anomaly in turbofan engines using 

streaming sensor data as input. In [27], a discrete wavelet transforms (DWT) modulus maximum for online 

change point detection by sliding dislocation window is applied for electric locomotive and forging machine 

anomaly identification. The current from these assets are exploited as input for the method. A stacking model 

consisting of Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme Gradient Boosting 

(XGBOOST) is trained using healthy data to produce the normal or healthy model of wind turbine gearbox in 

[28]. Mahalanobis distance (MD) is incorporated to the model that serves as the change point detection 

measurement. Finally, in [29], Log-likelihood ratio estimated by Particle Filter for Lithium-Ion battery anomaly 

detection is applied. The method is equipped with an adaptive detection threshold for detecting the cycle at which 

the degradation behaviour undergoes changes in the dynamics, possibly due to faults and anomalies. 

3. Methodology 

3.1. Probabilistic LSTM 

A probabilistic LSTM is employed to predict the RUL sequence distributions. The RUL distributions represent 

the health state of the studied assets from healthy state to failure. A probabilistic layer that output gaussian 

distribution with mean and variable standard deviation, characterizing the RUL distribution, is used in this output 

layer. The model is trained by only using the healthy part of the training data. The degradation and failure parts 
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are discarded. By doing so, the uncertainty of the prediction will show instability when the model is fed with the 

degradation part of the testing data, indicating anomaly. 

3.2. Uncertainty Quantification & CUSUM Anomaly Detection 

Uncertainty quantification will be evaluated via the rolling standard deviation plot of the Health State (HI) 

distribution sequence, which is the normalized RUL measurement of the system. An increasing trend indicates a 

growing uncertainty of the prediction while the contrary signifies that the model is more and more confident with 

the estimation. This change in trend especially in the transition point between health and degradation state can be 

an indicator of anomaly. CUSUM anomaly detection is employed to identify this change point phenomena.  

The CUSUM calculates the positive (upper CUSUM) and negative (lower CUSUM) deviations of a 

normalised, random variable from a reference value and compares them to a threshold. For each time series 

instance, the lower and upper CUSUMs, initially equals to 0, are updated according to the formulas below: 

 𝐶𝐿[𝑛]  =  𝑚𝑎𝑥(0,
𝑥[𝑛]  −  𝜇

𝜎
 −  𝑘 +  𝐶𝐿[𝑛 −  1]) (1) 

 

 𝐶𝑈[𝑛]  =  𝑚𝑎𝑥(0,
𝑥[𝑛]  −  𝜇

𝜎
 −  𝑘 +  𝐶𝑈[𝑛 −  1]) (2) 

where 𝜇 and 𝜎 are the approximate mean and standard deviation of time series (𝑥[𝑛]) in the healthy period, 

and 𝑘 is a predetermined reference value. Anomaly is flagged when 𝐶𝐿[𝑛]  >  ℎ or 𝐶𝑈[𝑛]  >  ℎ with ℎ  as the 

threshold.  

3.3. Performance Evaluation 

Root Mean Squared Error (RMSE) is used to calculate the performance of the model in anomaly detection. A 

score function, 𝑠 , is also employed, destined to evaluate the combination of earliness and accuracy of the 

detection compared to ground truth anomaly. An early and accurate detection produces better score [30,31].  

 𝑅𝑀𝑆𝐸 =  √
1

𝑀
∑(𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖

𝑡𝑟𝑢𝑡ℎ − 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)2

𝑀

𝑖=1

 (3) 

 𝑠 =  ∑ 𝑠𝑖

𝑀

𝑖=1

 (4) 

 𝑠𝑖 =  {
𝑒

−𝑑𝑖
13 

−1, 𝑑𝑖 < 0 

𝑒
𝑑𝑖
10

−1, 𝑑𝑖 > 0

} (5) 

 𝑑𝑖 = (𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 −  𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖
𝑡𝑟𝑢𝑡ℎ) (6) 

With 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖
𝑡𝑟𝑢𝑡ℎ  as the ground truth RUL for turbofan 𝑖 , 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 the predicted RUL for 

turbofan 𝑖, and 𝑀 as the total number of turbofans. 

4. Result and Discussion 

4.1. Case Study: Turbofan Engine Prognostic 

The CMAPPS (Commercial Modular Aero Propulsion System Simulation) Turbofan run-to-failure datasets are 

comprised of four full sets of preparation, testing, and ground truth RUL for a variety of turbofan engines, 

published by Nasa Prognostic Centre (PCoE) of Ames Research Centre and designated as FD001, FD002, FD003, 

and FD004 [32]. Using CMAPSS software, this data was produced by modifying the operating conditions and 

injecting faults of varying degrees of deterioration into a simulated turbofan system [33].  

In this analysis, the FD002 data was chosen. As shown in Table, this data consists of confirmed turbofan 

degradations whose health condition deteriorates after a certain cycle. Each turbofan has a time series sequence 

that includes Time (Cycle), 3 Operating Conditions (OC), and 21 sensor measurements that correspond to the 

system's temperature, pressure, various ratios, and bleed enthalpy. Different operating regimes (O-42K ft.), 

throttle resolver angle (20-100), and Mach number are referred to as OC (0-0.84). The effect of different operating 

conditions hides the faults found, and high levels of noise are introduced [33]. 
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Table 1. FD002 Dataset Characteristics 

Data Fault Modes Operating Conditions Train Units Test Units 

FD002 2 6 260 259 

 

4.2. Healthy Data for Anomaly Detection 

The RUL target for the model's training data is obtained by using a piece-wise linear degradation model 

[34,35]. The health of each fleet is therefore initially considered stable until the failure start point, after which a 

linear deterioration occurs until failure. 

The total operating period of a turbofan is represented by each time series sequence, with the last cycle 

representing the last instance before failure. Figure 1 shows how a turbofan's RUL is supposed to be equivalent to 

the previous cycle's value at first, then degrades linearly until it reaches nil (a). The turbofan 1 training data was 

collected over 192 cycles in this example.  

 

Using CUSUM, the first index of the upper or lower cumulative sums of each sensor's measurement that have 

drifted beyond 5𝜎 threshold from the target mean indicates the initiating point of deterioration. The failure start 

point is determined by taking the average of all of these indexes. The transformed RUL series is shown in Figure 1 

by combining the linear degradation obtained earlier with the failure start point (b). 

Finally, the degradation part of the training data is removed to keep only the healthy part for anomaly 

detection, marked as Stable area in Figure 1(b).  

4.3. RMSE and Score Result 

As can be seen in Table 2, the method shows excellent result in RMSE measure and good result in Score 𝑠 

metric. The latter result indicates that even though all the detection is early, the accuracy of some detection is not 

very good.  

Table 2. Proposed Method's Performance 

Results 

RMSE 14.9 

Score, 𝑠 818.5 

 

4.4. Uncertainty-Based Anomaly Detection  

In the following, prediction results of turbofan 2 in Figure 2 and turbofan 4 in Figure 4 are used as 

illustrations. As can be seen from Figure 3 and Figure 5, the prediction uncertainty became increasingly unstable 

before the ground truth anomaly. CUSUM detected this behaviour early on when the standard deviation of 

turbofan 2 and 4 predictions exceeds the 5σ thresholds. 

Figure 1(a). Initial RUL Targets Figure 1(b). Final RUL Targets 
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Figure 2. Turbofan 2 RUL Distribution Prediction 

 

Figure 3. Turbofan 2 RUL Distribution Standard Deviation 

 

Figure 4. Turbofan 4 RUL Distributions Prediction 
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Figure 5. Turbofan 2 RUL Distribution Standard Deviation 

5. Conclusion 

A changepoint detection based on deep learning’s prediction uncertainty is proposed in this work. A single 

input, multi outputs probabilistic LSTM is employed, producing the RUL distributions estimation, characterizing 

the health state of engineered systems. The behaviour of the standard deviations of these distributions indicates the 

uncertainty state of the model’s prediction. This uncertainty state can be exploited as an indicator of deterioration 

or anomaly particularly when the prediction transitions between heathy and deterioration state. By training the 

model using only healthy data and testing it with normal data, the uncertainty will show abrupt change when 

tested with anomalous data. This changepoint is detected using CUSUM anomaly detection with a predetermined 

threshold. Excellent results in term of RMSE measure and good result in score metric evaluating early, and 

accuracy of anomaly detection are obtained from the experiment with CMAPPS run to failure turbofan dataset. 
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