
Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5192

Benchmarking and Performance Analysis of Software Defined Networking Controllers

in Normal and Failsafe Operations using Multiple Redundant Controllers

Ayman Haggag 1

1 Electronics Technology Department, Faculty of Technology and Education, Helwan University.

haggag@techedu.helwan.edu.eg

Article History: Received: 5 April 2021; Accepted: 14 May 2021; Published online: 22 June 2021

Abstract: Software Defined Networking (SDN) has a great impact on networks and data communication. The future of the

infrastructure for networks will be different. Network administrators will no longer need to configure every router or switch,

and it will be unnecessary to program or write their configurations individually. A central control device is used to control the

entire network. In this research, we will build network topologies using open flow switches connected to open flow controllers

that will provide flow tables for switches. We will use Benchmarking and compare the performance of different popular open

flow controllers, OpenDaylight (ODL), Open Network Operating System (ONOS), RYU, Floodlight, POX, and Trema. We

will show how this new infrastructure drastically improves network performance and several legacy protocols, like Spanning

Tree Protocol, are rendered obsolete. In larger multiple controller networks, the network resilience against controller failure

with the utilization of multiple redundant controller connections is demonstrated.

Keywords: SDN, SDN controllers, Benchmarking, Failsafe operation

1. Introduction

The idea behind Software Defined Networking (SDN) is the separation between hardware and software similar

to the concept applied to computer systems separating hardware from software (Haggag, 2019). Traditional

network devices like routers and switches come with permanent proprietary preinstalled operating systems. With

SDN, those devices will be unintelligent pieces of hardware, and all the intelligence and processing power will be

transferred to the controller. This will provide a centralized point to manage all devices in the network. SDN will

lead to new developments, such as, Software-Defined Storage (SDS) (Gracia-Tinedo et al., 2019), Software-

Defined Data Center (SDDS) (Dai et al., 2017), Software Defined Networking Security (SDNS) (Correa Chica

et al., 2020), as well as the new concept of Network Functions Virtualization (NFV) (Li et al., 2019) that will

enable the creating of virtual switches, virtual routers, virtual load balancers, virtual firewalls which would

dramatically reduce out the need for those network devices and provide a great reduction in cost.

1.1. History of SDN

Martin Casado was a researcher interested in virtualization and virtual networks. In 2007, he founded a

company called Nicira in California specialized in virtual networks. During his Ph.D. study at Stanford University,

he worked on the development of the OpenFlow protocol as an open-source protocol. Meanwhile, Nicira company

developed the first virtual switch, then called Open vSwitch (OvS) (Gude et al., 2008). In 2012, VMware acquired

Nicira company and Casado became the VMware CEO for Networks, Information Technology and Security. He

aimed at developing an operating system that can be installed on any networking device or even a Personal

Computer (PC). This could be achieved by using the OpenFlow protocol (Sherwood et al., 2009) that would

enable a controller to manage and control hardware networking devices to forward data accordingly. SDN was

then defined as the physical separation of control plane and data plane where a centralized control plane controls

a set of several distributed devices as shown in Figure 1.

mailto:haggag@techedu.helwan.edu.eg

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5193

1.2. Real-life uses of SDN

Google used SDN since 2010 and claimed that the use of SDN greatly reduced storage expenses, routers and

switches costs, and reconfiguration costs. As Google network is an expanding network, the use of SDN reduced

the need for network engineers to configure new devices (Dixon et al., 2016). Facebook started to endorse the

SDN idea and started to manufacture switches that support OpenFlow protocol. They started with the production

a switch called wedge switch, then they produced another switch with a larger number of ports, faster and higher

in efficiency called 6-pack switch, those switches support the OpenFlow protocol with an operating system called

F-Boss that supports OpenFlow and can be used to manage all switches centrally (Cui et al., 2016). Microsoft also

endorsed SDN and claimed that this reduced yearly development budget and enabled network expansion at a lower

cost with full central control over network devices (Greenberg, 2015). This enables us to say that SDN is already

a reality starting to emerge stronger and it is expected that soon, SDN will dominate the networking industry.

1.3. Traditional Networks

In traditional networks, every networking device, such as a router or a switch, has its management plane, control

plane, and data plane as shown in Figure 2.

Figure 2. Every networking device has its management plane, control plane, and data plane.

For the management plane, each device needs to be programmed separately. The network administrator needs

to access each device either directly using a console cable or remotely using various management protocols, such

as SSH, telnet, or SNMP protocols, and every network device needs to be managed separately, one device at a

time. The control plane can be considered as the brain of the device. These are the protocols that many run on

routers such as routing protocols and tools used to build the MAC address table, access list, quality of service,

route map or to create VLANs. The data plane consists of the physical routers and switches with their ports, as

well as routing tables, created via the OSPF protocol, to enable data forwarding according to the routing table.

OSPF protocol has many known stability issues (Basu & Riecke, 2001).

Figure 1. A schematic diagram of Software Defined Networking (SDN).

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5194

In SDN, devices only retain the data plane, the management plane, and the control plane are merged and

removed from all networking devices and places in a central device called the Controller as shown in Figure 3.

Figure 3. SDN configuration.

The controller is mainly a software program installed on a powerful computer that acts as a server and functions

as the brain of all routers and switches in the entire network. The controller builds a flow table for the entire

network instead of every router building its routing table and every switch building its own MAC address table.

The controller sends this flow table to all devices in the network via the OpenFlow protocol (Hu et al., 2014).

1.5. Application Programming Interface (API)

Application Programming Interface (API) is a virtual interface that defines interactions between multiple

software intermediaries. It a communication language is that understood by two different parties. Applying this

concept to the SDN controller, we can see that the controller utilizes what is called Northbound Interface (NBI) to

help applications written in Python and JAVA interact with the controller using Extensible Markup Language

(XML), or JavaScript Object Notation (JSON) (Pham & Hoang, 2016). The controller also uses what is called

Southbound Interface (SBI) to help the controller interact with switches using openflow, netconf, SNMP, OVSDB

or opflex protocols as shown in Figure 4.

Figure 4. Northbound Interface and Southbound Interface in SDN.

Larger networks utilize several SDN controllers, in this case, Eastbound Interface (EBI) and Westbound

Interface (WBI) are used to allow controllers to communicate with each other.

1.4. Open SDN Concept

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5195

1.6. 0penFlow Architecture Components

Open Flow can be viewed as an architecture or as a protocol. OpenFlow as a protocol is the protocol that

enables the controller to communicate with the network hardware. OpenFlow architecture (Jarschel et al., 2011)

consists of the infrastructure layer, control layer, and application layer as shown in Figure 5.

Figure 5. Open Flow architecture.

The infrastructure layer consists of switches that connect the network and those switches are being controlled

via a Controller. This controller is the brain of the network and, at the same time, this controller is capable of being

programmed with new protocols or new designs or use to deploy a new protocol to all switches using various

programming languages like Python and Java as shown in Figure 6.

Figure 6. Open Flow Components.

1.7. The Controller

The controller must support the OpenFlow protocol. Various other protocols can be used as a communication

protocol between the controller and switches, like NetConf, OVSDB, or SNMP protocols. Figure 7 shows a

schematic diagram of the main components of an SDN controller (Hoang & Pham, 2015).

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5196

Figure 7. Major components of the SDN controller.

1.8. The Open Flow Switch

The Open Flow switch consists of an open flow secure channel, open flow ports, flow tables, group tables, and

meter tables. Open Flow Network Foundation (ONF) is the organization responsible for the specifications and

features that the Open Flow switch and OpenFlow protocol support. There two types of Open Flow switches, pure

open flow switch, and hybrid switch. The pure open flow switch is a switch with no control plane and cannot make

decisions and forwarding on its own. The hybrid switch is a switch with an operating system and is capable of

forwarding as it has its control plane, however, it has the capability also to operate as an open flow switch that can

connect to an openflow controller and receive a flow table. OpenFlow switches are now easily built using FPGA

(Liu, 2014).

1.9. Open Flow Secure Channel

Open flow secure channel is the communication interface between the switch and the controller. It is a TCP

based session that works on port numbers 6653 or 6633 and is usually initiated by the switch. This TCP session is

encrypted using Transport Layer Security (TLS) protocol or Secure Sockets Layer (SSL) protocol. The switch and

the controller negotiate the open flow version, versions 1.1, 1.2. 1.3. 1.4 and 1.5 are available. The negotiation

process ends with an agreement about a common version supported by both the switch and the controller to enable

backward compatibility. The controller starts sending encrypted flow entries to populate the flow table in the

switch. At the same time, the switch sends echo requests using the ping command to check and ensure connectivity

as shown in Figure 8.

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5197

1.10. Open Flow Ports

Open flow ports can be either physical or logical. A physical open flow port is a real port connecting a switch

directly to the controller. A logical open flow port is when the switch is not directly connected to the controller,

however, a logical open flow port is a logical connection established through other switch or switches to

communicate with the controller.

2. Benchmarking SDN Controllers

Several benchmarking tools exist for evaluating SDN controllers (Andrade et al., 2016). CBench (Sherwood

& Kok-Kiong, 2010) is an open-source benchmarking tool designed for the evaluation of OpenFlow SDN

controllers. Its operational model simulates SDN switches that send requests (Packet_IN) to the controller using

OpenFlow protocol. CBench uses Latency and Throughput as the two evaluation metrics. HCprobe is the extension

of CBench to provide additional capabilities in evaluation. WCBench is another extension of CBench built-in

Python that offers additional aspects of evaluation and statistics.

PktBlaster (World & Emulation, n.d.) is another benchmarking tool that tests large scale SDN networks. It

can measure throughput and latency for different test profiles as well as the size of the switch’s buffer and flow

tables.

OFNet (Shankar, 2016) benchmarking tool can generate different types of topologies with a traffic generator

that produces different types of traffic. It can measure performance characteristics such as CPU utilization, flow

entries, flow failure, Round Trip Time (RTT), and latency of flow setup. We give a summary of the benefits and

drawbacks of used benchmarking tools in Table 1.

Table 1. Advantages and drawbacks of used benchmarking tools.

Name Advantages Drawbacks

Cbench Open-source.

Provides multiple parameters for achieving

throughput and latency tests.

Only supports OpenFlow

version 1.0.

It has not been updated.

PktBlaster Supports larger networks. Only supports standard

topologies.

OFNet Contains a built-in traffic generator.

Supports the building of custom topologies.

Variant results according to

topology used

3. Simulation and Experiments

SDN is simulated using Linux based Mininet emulator running on a 64-bit Ubuntu 14.04 that has many SDN

software and tools installed, running within VMWare workstation emulation to create and run example topologies.

Mininet includes Open vSwitch 2.3.0 with support for Openflow 1.2, 1.3 and 1.4, and LINC switch. An

Figure 8. Open Flow Secure Channel.

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5198

implementation of OpenDaylight, ONOS, RYU, Floodlight, Floodlight-OF1.3, POX, and Trema are used.

Wireshark network protocol analyzer, Wireshark 1.12.1, with native support for OpenFlow parsing is used to

capture and analyze traffic. CBench, PktBlaster, and OFNet benchmarking tools are used for benchmarking the

performance of tested SDN controllers in term of throughput and latency for several network topologies.

3.1 Throughput Metrics

Throughput is a measurement of the rate of processing flow requests by the controller. It is measured by the

number of packet_in messages sent and the corresponding packet_out messages received per unit time.

3.2 Latency Metrics

Latency is time between the packets are sent to the controller and the response is received at the vSwitch.

4. Comparative Analysis of SDN vs Traditional Networks

Traditional networks as described earlier suffer from several limitations such as data forwarding is time-

consuming, error-prone, and has high conversion times, besides, this setup limits automation, innovation, and the

ability to connect devices from different vendors together. All devices in traditional networks are closed systems,

it is not possible to upgrade a device or try a new protocol and new devices need to be purchased that support the

new protocol.

Benefits of SDN resulting from separating the control plane from the data plane are summarised as, the response

to link failure or node failure if faster, loop avoidance is simpler, management is simpler, less time consuming,

money-saving, support for automation, innovation, and agility.

In traditional networks, network failure notifications need to propagate from one device to another until all

devices are notified of that failure, however in SDN, as soon as a failure occurs, the controller is notified, and the

controller immediately notifies all other devices about that failure to update the flow table.

Loop avoidance is simpler with SDN as in the presence of the controller, the occurrence of loops can be

mitigated without the need for the Spanning Tree Protocol as the controller has a complete map of the entire

network.

Management is simpler with SDN as the controller is a centralized point that can be used to manage the entire

network. It is possible through the controller to enable a specific protocol, for example, RIP on specific router

ports, create VLANs on switches, or create an access list and update appropriate devices using OpenFlow protocol.

Less time consuming and money-saving with SDN as the controller supports Application Programming

Interface (API) virtual interface that enables developers to write their codes for new protocols using JAVA or

Python programming languages and deploy it on the controller, the controller in turns deploys the new protocol on

routers and switches using OpenFlow, thus saves the money of purchasing new hardware and software as Open

Day Light (ODL) is an open-source OpenFlow controller free for anyone to use and also extends network

capabilities beyond any limitations through development of new protocols and supports innovation.

Automation is supported with SDN as the controller can be used to automatically apply network policies to all

routers and switches all at once. This also gives rise to increased network agility, as it is very simple to change

network policies from time to time according to dynamic network demands and conditions.

The problem of having a centralized point of control for the entire network is that this controller creates a single

point of failure, if the controller fails, the entire network will be down. The controller also created a single point

of attack, if an attacker managed to attack the controller, he can control the entire network. Table 2 shows a

comparative analysis of SDN vs traditional networks.

Table 2. Comparative Analysis of SDN vs Traditional Networks.

Criterial SDN Traditional Networks

Global Network View Central view at the

controller.

Not possible.

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5199

Network Management Easier with the help of the

controller.

Changes need to be implemented

separately for each device.

Maintenance Costs Lower maintenance costs. Higher maintenance costs.

Time for error handling

and updating

Quick and easy because of

the use of controllers.

Long and time-consuming.

Resource Utilization High level of utilization. Low level of utilization.

Security The controller creates a

single point of attack.

Low level vulnerable to security

attacks.

Loop Avoidance Native loop avoidance

through the SDN controller.

Spanning-Tree Protocol (STP) must

be used for loop avoidance.

5. Elimination of the Spanning-Tree Protocol in SDN

Spanning-Tree Protocol (STP) is a very important protocol in traditional networks to prevent the occurrence of

any loops in layer-2 switches. STP is used to ensure that there is only one path that exists between any two points.

SDN controllers can run STP function to stop flooding and to prevent broadcast storms on the network.

6. Comparative Analysis of Various SDN Controllers

In this section, we will evaluate the performance of several SDN controllers: OpenDaylight, ONOS, RYU,

Floodlight, Floodlight-OF1.3, POX, and Trema.

Different metrics can be used to quantify the speed of transfer of data through a network among which latency,

throughput, and topology discovery time are the most popular. Latency is the time taken for a packet to be

transmitted through a network. Throughput is the amount of data being transmitted per second. Legacy Network

Support is the support for backward compatibility with traditional routers and switches that contain their local

control planes. SDN controllers that support network monitoring provide detailed accounting data with every flow

by collecting these data from devices and provide them to the operator. Table 3 provides a comparison of the

features of different SDN controllers.

Table 3. Comparison of the features of different SDN Controllers.

Criterial OpenDaylight ONOS RYU Floodlight POX Trema

Open

Source

Yes Yes Yes Yes Yes Yes

OpenFlow

Support

V1.0 V1.0 V1.0

V1.2

V1.3

V1.0 V1.0 V1.0

Language

Support

Java Java Python Java Python C

Runy

Legacy

Network

Support

Yes Partial Yes Yes No No

Platform

Support

Linux

Mac

Windows

Linux Linux Linux Linux

Mac

Windows

Linux

Network

Monitoring

Yes Yes Yes Yes Partial Partial

Load

Balancing

Yes No No No No No

Figure 9 shows the results of measuring the average throughput for various controllers while Figure 10 shows

the results for measuring the average latency for various controllers.

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5200

7. Resilience Against Controller Failure

A secure channel session is maintained between the switch and the controller using TCP/TLS. In a scenario

when the switch is connected to several redundant controllers as shown in Figure 11, only one controller at a time

will be managing the switch to provide flow entries. If an interruption in the connection is detected with TCP/TLS

time out, the switch sends controller status message to the other connected controllers, which in turn select among

them in a fast way another controller to manage the switch. A controller status message is sent again when the

failed controller session is up again.

Figure 11. Connection failure between the switch and the controller in a multiple redundant controller

scenario.

La

Figure 9. The average throughput for various controllers.

Figure 10. The average latency for various controllers.

1

10

100

1000

OpenDaylight ONOS RYU Floodlight POX Trema

Fl
o

w
 R

at
e

(f
lo

w
s/

m
s)

Controller

Average Throughput for Various Controllers

0

20

40

60

80

100

OpenDaylight ONOS RYU Floodlight POX Trema

La
te

n
cy

 T
im

e
(m

s)

Controller

Average Latency for Various Controllers

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5201

In the case the connection with all controllers is interrupted, or in the case, there is only one controller and the

connection is interrupted, the switch goes into standalone fail-safe more. If the switch is a hybrid switch, it activates

it one control plane and operates like a traditional switch without controller support. If the switch is an open flow

only switch, entries in the flow table are used to forward packets of similar source and destination address already

having matching rules in the flow table, other flows are dropped and the switch fails to forward. However, due to

the limited lifetime of entries in the flow table, which deletes a flow entry from the flow table after a certain amount

of time passes with no flows matching that flow entry, the switch starts to drop those flows and fail to forward.

The lifetime is found to be 60 seconds which can be increased to enhance the fail-safe behaviour of the switch. If

the connection to the controller is resumed before 60 seconds, the switch resumes operation again with little impact

of failure. Figure 12 shows flows entries in the switch. idle_timeout=60 indicates that the idle life time of flows in

the switch is set to 60 seconds and idle_age is the time this flow is left with no traffic. In our experiment, until

idle_age reaches 59, flows are retained in the switch, afterwards, flows are deleted and packets are dropped if the

connection with the controller is not resumed with 60 seconds.

Figure 12. Flow entries retained in the switch in the secure fail mode.

8.Conclusion

In this research, we compared the performance of SDN networks to traditional networks and we showed how

traditional networks suffer from several limitations such as data process forwarding is time-consuming, error-

prone, and has high conversion times, besides, traditional networks limit automation, innovation and the ability to

connect devices from different vendors together. SDN networks, on the other hand, have the advantages that the

response to a link failure or node failure if faster, loop avoidance is simpler, management is simpler, less time

consuming, money-saving, support for automation, innovation, and agility. We then used benchmarking tools to

compare the performance of SDN controllers, we found that Multi-threaded controllers such as OpenDayLight,

ONOS, and Floodlight perform better than centralized single-threaded controllers such as RYU, POX, and Trema

in terms of latency and throughput. Variant features such as packet length and vSwitch buffer size may have an

impact on the performance of the controller and these features need to be standardized for better quantification of

controllers’ performance. SDN is also resilient against controller failure in multiple redundant controllers’ scenario

and also in secure safe mode where flow entries are retained in the switch for an idle time of 60 seconds. SDN and

Network Function Virtualization (NFV) will be deeply integrated in the fourth coming 5G technology and thus

requires further investigations and studies.

References

1. Andrade, L., Borba, M., Ishimori, A., Farias, F., Cerqueira, E., & Abelém, A. (2016). On the

benchmarking mainstream open software-defined networking controllers. Proceedings of the 9th

Latin America Networking Conference, LANC 2016, 9–12.

https://doi.org/10.1145/2998373.2998447

2. Basu, A., & Riecke, J. (2001). Stability issues in OSPF routing. 225–236.

https://doi.org/10.1145/383059.383077

3. Correa Chica, J. C., Imbachi, J. C., & Botero Vega, J. F. (2020). Security in SDN: A comprehensive

survey. Journal of Network and Computer Applications, 159(November 2019), 102595.

https://doi.org/10.1016/j.jnca.2020.102595

Turkish Journal of Computer and Mathematics Education Vol.12 No 13 (2021), 5192-5202

Research Article

5202

4. Cui, L., Yu, F. R., & Yan, Q. (2016). When big data meets software-defined networking: SDN for big

data and big data for SDN. IEEE Network, 30(1), 58–65.

https://doi.org/10.1109/MNET.2016.7389832

5. Dai, B., Xu, G., Huang, B., Qin, P., & Xu, Y. (2017). Enabling network innovation in data center

networks with software defined networking: A survey. Journal of Network and Computer

Applications, 94(July), 33–49. https://doi.org/10.1016/j.jnca.2017.07.004

6. Dixon, I. C. K., Us, T. X., Felter, W. M., Us, T. X., Jose, S., Us, C. A., & Shaikh, A. A. (2016). (12

) United States Patent (10) Patent No .: 2(12).

7. Gracia-Tinedo, R., Sampé, J., París, G., Sánchez-Artigas, M., García-López, P., & Moatti, Y. (2019).

Software-defined object storage in multi-tenant environments. Future Generation Computer Systems,

99, 54–72. https://doi.org/10.1016/j.future.2019.03.020

8. Greenberg, A. (2015). SDN for the Cloud Road to SDN, Keynote in the 2015 ACM Conference on

Special Interest Group on Data Communication. ACM Conference on Special Interest Group on Data

Communication.

9. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., & Shenker, S. (2008). NOX:

towards an operating system for networks. ACM SIGCOMM Computer Communication Review,

38(3), 105–110. https://doi.org/10.1145/1384609.1384625

10. Haggag, A. (2019). Network Optimization for Improved Performance and Speed for SDN and
Security Analysis of SDN Vulnerabilities. International Journal of Computer Networks and

Communications Security, 7(July), 83–90.

11. Hoang, D. B., & Pham, M. (2015). On software-defined networking and the design of SDN

controllers. 2015 International Conference on the Network of the Future, NOF 2015.

https://doi.org/10.1109/NOF.2015.7333307

12. Hu, F., Hao, Q., & Bao, K. (2014). A survey on software-defined network and OpenFlow: From

concept to implementation. IEEE Communications Surveys and Tutorials, 16(4), 2181–2206.

https://doi.org/10.1109/COMST.2014.2326417

13. Jarschel, M., Oechsner, S., Schlosser, D., Pries, R., Goll, S., & Tran-Gia, P. (2011). Modeling and

performance evaluation of an OpenFlow architecture. Proceedings of the 2011 23rd International

Teletraffic Congress, ITC 2011, 1–7.

14. Li, D., Hong, P., Xue, K., & Pei, J. (2019). Virtual network function placement and resource

optimization in NFV and edge computing enabled networks. Computer Networks, 152, 12–24.

https://doi.org/10.1016/j.comnet.2019.01.036

15. Liu, T. (2014). Implementing Open flow switch using FPGA based platform. June, 1–140.

16. Pham, M., & Hoang, D. B. (2016). SDN applications - The intent-based Northbound Interface

realisation for extended applications. IEEE NETSOFT 2016 - 2016 IEEE NetSoft Conference and

Workshops: Software-Defined Infrastructure for Networks, Clouds, IoT and Services, 372–377.

https://doi.org/10.1109/NETSOFT.2016.7502469

17. Shankar, G. H. (2016). OFNet. OFNet-Quick User Guide.[Online]. Available: Http://Sdninsights.

Org/.[Accessed: 05-Jun-2018].

18. Sherwood, R., Gibb, G., Yap, K., Appenzeller, G., Casado, M., Mckeown, N., & Parulkar, G. (2009).

FlowVisor: A Network Virtualization Layer. Network, 15. https://doi.org/10.1007/s13398-014-0173-

7.2

19. Sherwood, R., & Kok-Kiong, Y. (2010). CBench: An openflow controller benchmark tool.

20. World, R., & Emulation, N. (n.d.). Real World Network Emulation Testing and Performance

Benchmarking of SDN Controllers Software based solution emulates large scale SDN networks with

thousands of nodes and millions of flows Lower investment on test infrastructure REPORTS &

STATISTICS Ben. 1–4.

