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Abstract

Aset S S V(G in a graph G is said to be a [1,2]-connected dominating set if for every vertex ¥ €V — 5,
1= |N(v)NS5| = 2and <5 = is connected. The minimum cardinality of a [ 1,2]-connected dominating set is
called the [1,2]-connected domination number and is denoted by ¥y 57, (G). In this paper, we initiate a study of
this parameter.
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1 Introduction

The graph G = (V, E') we mean a finite, undirected, connected graph with neither loops nor multiple edges. The
order and size of & are denoted by 72 and 1 respectively. The degree of a vertex i in & is the number of edges
incident with i and is denoted by d (1), simply d(). The minimum and maximum degree of a graph G is
denoted by 8(G) and A(G), respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1]
and Haynes et.al [2].

A set § & V is a dominating set if every vertex in ¥ — 5 is adjacent to atleast one vertex in 5. The minimum
cardinality of a dominating set is called the domination number and is denoted by ¥ (). Sampathkumar and
Walikar [€] introduced the concept of connected domination in graphs. A dominating set 5 is a connected
dominating set if it induces a connected subgraph in G. The minimum cardinality of a connected dominating set of
G is called the connected domination number and is denoted as ¥, (G ). Paulraj Joseph. J and Arumugam. S [7,4]
proved that ¥(G) + ¥(G) =n + 1 and ¥(G) + k(G) = n. Also they characterized the corresponding
extremal graphs.

Mustapha Chellali et.al., 2 first studied the concept of [1,2]-sets. A subset § = V' isa [j, k] — =set if, for every
vertex v € V' — 5 j = [N(v) n 5| =< k for any non-negative integer j and k. A vertex set 5 = Visa [1,2]-set
if, 1 < [N(v) NS| =< 2 for every vertex ¥ € V — 5, that is, every vertex ¥ € V' — 5 is adjacent to either one
or two vertices in S. The minimum cardinality of a [1,2]-set of G is denoted by ¥ 5;(G) and is called [1,2]-
domination number of G. Xiaojing Yang and Baoyindureng Wu [8] extended the study of this parameter.

Motivated by the above concepts, in this paper we introduce the concept of [1,2]-connected domination in graphs.
Notations:
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Let H be a regular graph.

1. H(P,)is a graph obtained from H by attaching an end vertex of Py to a vertex of H.

2. H(my,m,,...,m, ) denotes the graph obtained from the graph H by attaching 772; pendant edges to the
vertex 7; € V(H),1 =< i < 1. The graph K;(m,,m,) is called bistar and it is also denoted by B (1,7, ).

3. H(mP, ) is the graph obtained from H by attaching 72 times an end vertex of P, to a vertex of H.

2 Main Result

Definition 2.1 A set 5 = V in a graph G is said to be a [1.2]-connected dominating set ([1.2]cd — set) if for
every vertex ¥ €V — 51 < [N(v)NS| = 2and < 5 = is connected. The minimum cardinality of a [1,2]-
connected dominating set is called the [1,2]-connected domination number and is denoted by ¥y 1. (G). A
[1.2]cd —set of cardinality ¥y 5y, is called a ypy 2, —set.

Observation 2.2
The [1.2]-connected domination number for some standard graphs can be easily found.

1 ifn<3

1. For a path B, YIL20e (P,) = {ﬂ “ 9 otherwise

2. Foracycle €y, ¥pq,97.(Cp) = — 2,10 = 3.
3. If G is a complete graph K, or astar Ky ,, 4 or wheel W, then ¥ 5. (G) = 1.
4. For a complete bipartite graph K, ., YiL2)e (K,.)=2r1rs=2

5. If G is a bistar B(7,5), then yy 51.(G) = 2.

Theorem 2.3 For atree T of order 7t = 3, ypy 5. (T') = n — e, where € is the number of pendant vertices.

Proof. Let A be the set of all pendant vertices of T. Then ¥ — A4 is a [1,2]-connected dominating set of T. Hence
Yiu2e(T) =n — e Let S beany ypy 5, — setof T. Since 5 is connected 5 contains all the internal vertices and
hence |S| = 1 — e. Thus the result follows.

Corollary: 2.4 Foratree T, ¥4 55, (T) = n — 2ifand only if T is a path.

Observation: 2.5 Let G be a connected graph of order 12 = 3. Then ypy 51, (G) =n — 2.
Observation: 2.6

1. The complement of a [1,2]cd — set need not be a [1,2] cd —set.
2. Every [1,2]cd —set is a dominating set but not conversely.

3. Every [1.2]cd —set is a connected dominating set but the converse need not be true.

Observation: 2.7 For agraph G, ¥(G) = ¥[121(G) = ¥1.21.(G) and ¥, (G) = ¥p4,21.(G)-
T

Theorem: 2.8 Foragraph G, [T 71 = ¥71,2.(G) = 2m — n.
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Proof. Since ¥(G) = ¥py2).(G) . the lower bound follows directly. By observation 2.5,
T’[Lz]c(sj “n—2=2(n—1)—n=<2m—n

Theorem: 2.9 Let G be a connected graph. Then ¥y 2. (G) = 2m — nifandonly if G = F,

Proof. If G is a path, then ¥y 4,(G) =n—2 =2(n—1)—n =2m — n. Conversly, assume that
Yiu2e(G) = 2m —n. Then 2m —mn =n — 2 which gives m =mn —1 and hence G is a tree. Thus
n—e=2m—n = 2(n— 1) —n which gives & = 2. Hence G is a path.

Observation: 2.10 If G is K, or W, or Ky ,,_, or C;; oratree, then y, (G) = ¥py,21.(G)-
Observation: 2.11 For a graph G, ¥y,57.(G) = 1 if and only if there exist a vertex & such that d (1) =n — 1.

3 Relationship with connectivity and chromatic
number

Theorem 3.1 For a connected graph G, ¥4,2,(G) + ®(G) = 2n — 3 and the equality holds if and only if G is
K.

Proof. Since ¥74,71,(6) =n — 2 and K(G) = n — 1 the result follows. Let ¥p4 5. (G) + x(G) = 2n — 3.
Then ¥py.21.(6) =n — 2 and k(G) =n — 1. Since k(G) =n — 1, G is complete. But for a complete graph
¥11.23(G) = 1and hence n = 3. Thus G is K3. The converse is obvious.

Theorem 3.2 Let G be a connected graph. Then ¥4 43, (G) + x(G) = 2n — 4 if and only if G is isomorphic to

Proof. Let ¥74,27.(G) + k(G) = 2n — 4. Then there are two cases to consider.

()W¥i2c(6) =n—2and k(G) =7 — 2 (i) 5. (6) =n—3andk(G) =n—1

Case 1.y 7. (6) =n—2andk(G) =n — 2

Since K(G) =n—2 we have 1 — 2 < 8§(G). If 6§ =n— 1 then G is a complete graph, which is a
contradiction. Hence 5(G) = n — 2. Then G is K, — @ where @ is a matching in K,,. Thus ¥y 51.(G) = 2. If
Y11.23c(G) = 2, then m = 4 and hence G is isomorphic to Cy. If [y 5;.(G) = 1, then @ = 3 and hence G is
P,

Case 2.¥(y,5.(6) =n—3andk(G) =n—1

Since K(G) =7 — 1, G is a complete graph. But for complete graph Y123 (G) = 1and hence 1t = 4. Thus G
is K. The converse is obvious.

Theorem 3.3 Foracycle €y, ¥4, 2. (C,,) = ¥(C,,) ifand only if 2 = 4or5.
Proof. Let ¥74,25c(Cn) = x(C,). Then ¥py5.(Co) =2 or 3. If ¥pq9.(C,) =2, then n =4 If

¥11.23e(Cn) = 3, then 1 = 5. The converse is obvious.

Theorem 3.4 For a connected graph G, ¥y,21.(G) + x(6) = 2n — 2 and the equality holds if and only if G is
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K.

Proof. ~The inequality follows directly from yp5.(G) =n—2 and x(G)=n. Let
¥rue(G) + x(6) = 2n — 2. Then ¥y 5. (G) =n — 2 and ¥(G) = n. Since x(G) = n, G is complete.
But for complete graph ¥4 51, (6) = 1 and hence . = 3. Thus G is K3. The converse is obvious.

Theorem 3.5 Let G be a connected graph. Then ¥y 51.(G) + x(G) = 2n — 3 ifand only if G is K or P,

Proof. Let ¥y 2.(G) + x(G) =2n — 3. Then () yp35.(6) =n—2 and x(G) =n—1 or (ii)
¥r12.(G) =n —3and x(G) = n.

Case:l ¥y 5. (6) =n—2andx(G) =n—1

Since ¥(G) =mn — 1, G contains a clique K on 7. — 1 vertices or does not contains a clique K on 1z — 1 vertices.
Let G contains a clique K of order 7 — lvertices and let v € V(K). Let € N(v). Then {u} is a
[1,2]cd —set of G. Thus 7t = 3 and K = K and hence G is P3.

If G does not contains a clique K on 7t — 1 vertices, then it is verified that no graph exists.

Case:2 ¥py,07.(6) =n—3and x(G) =n

Since x(G) = 7 and hence G is complete. But for a complete graph 7 57, (G) = 1 and hence . = 4. Thus G
is K. The converse is obvious.

Theorem 3.6 Let G be a connected graph. Then ¥y 5,.(G) +x(G)=2n—4 if and only if
G € {Py, Cy, C5, K5, K3 (P;), Ky — e}

Proof. Let ¥y 01 (G) + x(G) = 2n — 4. This is possible only if (i}y[y,7.(6) =n —2and x(6) =n — 2
or (i))¥1,21:(G) =n —3and x(G) =n — Lor (iii)ypy 5.(6) =n —4and x(G) =n.

Case: 1¥py,9.(6) =n—2and x(G) =n — 2

Since x{G)=m — 2, either G contains a cligue K on 1 — 2 vertices or G = C;+ K,_. Let
G = C5+ K, 5. Ifn = 6 then ¥4,5).(G) = 1 and hence 7 = 3 which is a contradiction. Thus 72 = 5 and
hence &G = (.

Suppose G contains a clique K on 7t — 2 vertices. Let S = V — V(K) = {v,, v, }. Then either << 5 == K or
<5 >=K,

Subcase: 1 < § == K,

Since G is connected either ¥ or 75 is adjacent to a vertex in K. Let ¥y be adjacent to 1t; € V(K'). Then
{r1.u }isa [L2]ed —set of G. Hence ¥y, 07, (G) = 2 sothat m < 4. If . = 4, then G is either Py or Cy. If
1 = 3, then there is no graph satisfying the statement of the theorem.

Subcase: 2 < § == K,

Since G is connected, we have two cases to consider.

Subcase: 2.1 N(w; ) N N(v,) = ¢

Let u € N(vy) N N(w;). Then {u}is a [1.2]cd —set of G and hence ¥y 5;.(6) = 1 which gives 1 = 3.
Thus G is isomorphic to P5. But ¥(P5) = 2 # 1 — 2 which is a contradiction.

Subcase: 2.2 N(wy ) N N(v,) = ¢

Let ¥yiy,¥oU, € E(G) for some uq, U, € V(K). Then {uq.u,} is a [1,2]cd —set of G. Thus
¥11,21c(G) = 2 and hence m = 4. Thus ' = K, which gives G = P,

Case:2 ¥py,07.(6) =n—3and x(G) =n—1
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Since ¥(G) = n — 1, either G contains a clique K on 1 — 1 vertices or does not contains a clique K on 1t — 1
vertices. Let G contains a clique K on 72 — 1 vertices and let ¥ € V' — V(K'). Since G is connected, without loss
of generality we may assume that v be adjacent to & € V(K. Then {u} is a [1,2]cd —set of G which gives
¥r123.(G) =1 and hence m =4. Thus K =K3. If d(v) =1 then G = K3(Py). If d(v) =2 then
G=K,—e

If G does not contains a clique K on 1t — 1 vertices, then it is verified that no graph exist.

Case: 3¥y,51.(6) =n —4and ¥(G) =n

Since ¥(G) =m, G is complete and hence ¥4 27, (G) = 1. Thus = =5, so that G = K. The converse is
obvious.

Theorem 3.7 Let G be a connected graph then, ¥y 71.(G) + x(G) = 2n — 5 if and only if G is isomorphic to
P or K3(P3) or Ky 5 or K3(1,1,0) or K; or K5 — ¥, where ¥ € E(K;) such that the edge induced subgraph
<Y >isastarand 1 < |[¥| = 3orH,1<1i = 3.

Proof. Let ¥[y7.(G) +x(G) =2n—5. This is possible only if (i) ¥pq5.(6) =n—2 and
¥(G)=n—=3 or (i) ypz.(6)=n—3 and x(G)=n—2 or (i) ¥3.(6) =n—4 and
x(G)=n—1or(iv) y3,5.(6) =n—5and x(G) =n.

Case.l¥[y,7.(6) =n—2andy(G)=n—3

Since ¥(G) =m — 3, G contains a clique on 1 — 3 vertices or does not contains a clique on 7= — 3 vertices.
Suppose G contains a clique K on 1. — 3 vertices. Let S = V(G) — V(K) = {vy, v, v3}.

Subcase 1: < 5 == K,

Since G is connected, every vertex in S is adjacent to atleast one vertex in K.

Suppose all the vertices of S are adjacent to uy € K. Then {u,} is [1,2]ed —set of G. Hence yy,5;.(G) = 1.
Then 7t = 3 which is a contradiction.

Suppose 17,7, are adjacent to a vertex iy € K and v3u, € E. Then {uy,u,} is [1,2]cd —set. Hence
Y1127 (G) = 2, then . = 4 and hence K = K, which is a contradiction.

Suppose all the vertices of S are adjacent to distinct vertices of K. Let u;¥; € E. Then {u 1,1z} is
[1,2]cd —set. Hence y74 5. (G) = 3,then 7 < 5, which is a contradiction.

Subcase 2: << 5 ==K, UK,

Let vy17; € E. Since G is connected ¥4 and ¥ have neighbors in K.

Suppose N(vy) N N(v5) # @, Let vyuy, v3uy € E. Then {vy, 14} is a [1,2]cd —set of G and hence
¥[1.2)ec(G) = 2 and 0 = 4, which is a contradiction.

Suppose V(173 ) N N({wvy) = @. Let v U4, V3, € E. Then {v, 1y, U5} is a [1,2]cd —set of G and hence
n=5ThenG = P_ Ifd(v;) = 2ord(v,) = Lord(w;) = 1, then no graph exists.

Subcase 3: < 5 == [y

Let vyuy € E. Then {uy,v;} is a [1,2]ed —set of G and hence ¥y 21.(G) = 2. Then 7 = 4. Hence
K = K, which is a contradiction.

Subcase 4: << 5 == Py

Let << 5 == (vy,17;, 773 ). Since G is connected, at least one vertex of S is adjacent to a vertex in K. Let
vyl € E(G). Then {v,, 1y} isa [1.2]cd —set of G. Thus ¥4 5. (G) = 2 and hence . = 4. Then K = K,
and hence no graph exists.

Suppose 1y & E(G). Let vyuy € E(G). Then {vy, v, uy} is [1,2]cd —set of G. Hence ¥y 5. (G) = 3
and 2 = 5. Itisclear that 1 = 5. Then K =K, and G = P.. If d(v;) = 2 or d(v3) = 1, then no graph
exists.
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If G does not contains a clique on 7t — 3 vertices, it can be verified that no graph exists.

Case.2 ¥[y,7.(G) =n —3andy(G) =n—2

Since ¥(G) =n — 2, G contains a clique K of order 1 — 2 or G = C; + K, _-. Let K be a clique of order
n—2inG. LetS =V —V(K) = {vy,v,]}

Subcase.1 < 5 == K,

Without loss of generality we assume that ¥;1t; € E for some 11 € V(K. Then {17y, 1, }isa [1,2] cd —set of
G and hence ¥y 21, (G) = 2. If ¥y,97,(G) = 1 then . = 4 and hence K = K, which is a contradiction. If
¥ru23c(G) = 2, thenn = 5 and K = Kj3. Hence G is isomorphic to K3(P3) or HyorH,orH;,

Subcase.2 << § == K,

If N(vy) N N(vy) # @, then ¥y 2, (G) = 1. Hencen = 4 and K = K. Thus G = K, 5. If d(vy) = 2,
then K = K3 which is a contradiction. Thus d {7y} = 1 and hence G = K 5.

Let N(vy) N N(v;) = @. Letu € N(v;) and v € N(w7). Then {u, v} is aypy 5y, —setof G. Thusn = 5
and K = K. Hence G is isomorphic to either K5(1,1,0) or H;.

Suppose G = C + K, _z. Then ¥y 2,7 (G) = 1 and hence 2 = 4 which is a contradiction.

Case.3yy,9.(6) =n—4and y(6) =n—1

Then G contains a clique K of order = — 1. Let ¥V — V(K) = {v}. Since G is connected there exists a vertex
u € V(K) such that uv € E. Then {u} is a [1.2]cd —set of G. Thus # =5 and K = K. Hence G is
isomorphic to Kz —Y where ¥ & E(K:) such that the edge induced subgraph < ¥ = is a star and
1< |Y| <3

Cased ¥y g (G) =n—5and y(G) =n

Since ¥(G) = n, G is a complete graph. But for complete graph G, Y12 (G) =1, so that = 6 and hence
G = K. The converse is obvious.

Conclusion:

In this paper, we introduced the concept of [1,2]-Connected domination number of graphs and obtained its bounds.
We also showed the relation between [1,2]cd —set with connectivity and chromatic number of graphs.
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