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Abstract 

  A set  in a graph G is said to be a -connected dominating set if for every vertex , 

 and  is connected. The minimum cardinality of a -connected dominating set is 

called the -connected domination number and is denoted by . In this paper, we initiate a study of 

this parameter.   
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1  Introduction 

 

 The graph  we mean a finite, undirected, connected graph with neither loops nor multiple edges. The 

order and size of  are denoted by  and  respectively. The degree of a vertex  in  is the number of edges 

incident with  and is denoted by , simply  The minimum and maximum degree of a graph  is 

denoted by  and  respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1] 

and Haynes et.al [2]. 

A set  is a dominating set if every vertex in  is adjacent to atleast one vertex in . The minimum 

cardinality of a dominating set is called the domination number and is denoted by . Sampathkumar and 

Walikar  introduced the concept of connected domination in graphs. A dominating set  is a connected 

dominating set if it induces a connected subgraph in G. The minimum cardinality of a connected dominating set of 

G is called the connected domination number and is denoted as . Paulraj Joseph. J and Arumugam. S  

proved that  and . Also they characterized the corresponding 

extremal graphs. 

Mustapha Chellali et.al.,  first studied the concept of -sets. A subset  is a  if, for every 

vertex ,  for any non-negative integer j and k. A vertex set  is a -set 

if,  for every vertex , that is, every vertex  is adjacent to either one 

or two vertices in S. The minimum cardinality of a -set of G is denoted by  and is called -

domination number of G. Xiaojing Yang and Baoyindureng Wu  extended the study of this parameter. 

Motivated by the above concepts, in this paper we introduce the concept of -connected domination in graphs. 

Notations: 
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Let  be a regular graph.   

    1.   is a graph obtained from  by attaching an end vertex of  to a vertex of .  

    2.   denotes the graph obtained from the graph  by attaching  pendant edges to the 

vertex  The graph  is called bistar and it is also denoted by   

    3.   is the graph obtained from  by attaching  times an end vertex of  to a vertex of . 

 

2  Main Result 

 

Definition 2.1 A set  in a graph G is said to be a -connected dominating set  if for 

every vertex ,  and  is connected. The minimum cardinality of a -

connected dominating set is called the -connected domination number and is denoted by . A 

set of cardinality  is called a set.  

 

Observation 2.2 

The -connected domination number for some standard graphs can be easily found. 

  

    1.  For a path ,  

 

    2.  For a cycle , , . 

 

    3.  If G is a complete graph  or a star  or wheel  then . 

 

    4.  For a complete bipartite graph , , . 

 

    5.  If G is a bistar , then . 

 

 

Theorem 2.3 For a tree T of order , , where  is the number of pendant vertices. 

 

Proof. Let  be the set of all pendant vertices of . Then  is a -connected dominating set of . Hence 

. Let  be any  set of . Since  is connected  contains all the internal vertices and 

hence  Thus the result follows.  

 

Corollary: 2.4 For a tree T,  if and only if T is a path. 

Observation: 2.5 Let G be a connected graph of order . Then . 

Observation: 2.6  

 

    1.  The complement of a  need not be a set. 

 

    2.  Every set is a dominating set but not conversely. 

 

    3.  Every set is a connected dominating set but the converse need not be true. 

 

 

Observation: 2.7 For a graph G,  and . 

Theorem: 2.8 For a graph , . 
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Proof. Since  , the lower bound follows directly. By observation , 

.  

 

Theorem: 2.9 Let G be a connected graph. Then  if and only if  

 

Proof. If G is a path, then . Conversly, assume that 

. Then  which gives  and hence G is a tree. Thus 

 which gives . Hence G is a path.  

 

Observation: 2.10 If  is  or  or  or  or a tree, then . 

Observation: 2.11 For a graph G,  if and only if there exist a vertex  such that . 

 

3  Relationship with connectivity and chromatic  

number  

 

 

Theorem 3.1 For a connected graph G,  and the equality holds if and only if  is 

.  

  

Proof. Since  and  the result follows. Let . 

Then  and . Since , G is complete. But for a complete graph 

 and hence . Thus  is . The converse is obvious.  

 

 

Theorem 3.2 Let G be a connected graph. Then  if and only if  is isomorphic to 

 or  or .  

 

 

Proof. Let  Then there are two cases to consider. 

(i)  and  (ii)  and  

 Case 1.  and  

Since  we have . If , then  is a complete graph, which is a 

contradiction. Hence . Then  is  where  is a matching in . Thus . If 

, then  and hence  is isomorphic to . If , then  and hence  is 

.   

Case 2.  and  

Since ,  is a complete graph. But for complete graph  and hence  Thus  

is . The converse is obvious.  

 

Theorem 3.3 For a cycle ,  if and only if .  

 

Proof. Let . Then  or . If , then . If 

, then . The converse is obvious. 

 

 

Theorem 3.4 For a connected graph G,  and the equality holds if and only if  is 



Turkish Journal of Computer and Mathematics Education                 Vol.12 No 13 (2021), 5100-5105 

                                                                                                                                   Research Article  

5103 

 

.  

 

Proof. The inequality follows directly from  and . Let 

. Then  and . Since , G is complete. 

But for complete graph  and hence . Thus  is . The converse is obvious. 

 

 

Theorem 3.5 Let G be a connected graph. Then  if and only if  is  or .  

 

Proof. Let . Then   and  or  

 and . 

Case:1  and  

Since , G contains a clique K on  vertices or does not contains a clique K on  vertices. 

Let G contains a clique K of order vertices and let  Let . Then  is a 

set of G. Thus  and  and hence  is . 

If G does not contains a clique K on  vertices, then it is verified that no graph exists. 

Case:2  and  

Since  and hence G is complete. But for a complete graph  and hence . Thus  

is . The converse is obvious.  

 

 

Theorem 3.6 Let G be a connected graph. Then  if and only if 

.  

 

Proof. Let . This is possible only if (i)  and  

or (ii)  and  or (iii)  and . 

Case: 1  and  

Since , either G contains a clique K on  vertices or . Let 

. If  then  and hence  which is a contradiction. Thus  and 

hence . 

Suppose G contains a clique K on  vertices. Let . Then either  or 

. 

Subcase: 1  

Since G is connected either  or  is adjacent to a vertex in K. Let  be adjacent to . Then 

 is a set of G. Hence  so that . If , then G is either  or . If 

, then there is no graph satisfying the statement of the theorem. 

Subcase: 2  

Since G is connected, we have two cases to consider.  

Subcase: 2.1  

Let . Then  is a set of G and hence  which gives . 

Thus G is isomorphic to . But  which is a contradiction. 

Subcase: 2.2  

Let  for some . Then  is a set of G. Thus 

 and hence . Thus  which gives . 

Case:2  and  
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Since , either G contains a clique K on  vertices or does not contains a clique K on  

vertices. Let G contains a clique K on  vertices and let . Since G is connected, without loss 

of generality we may assume that v be adjacent to . Then  is a set of G which gives 

 and hence . Thus . If  then . If  then 

. 

If G does not contains a clique K on  vertices, then it is verified that no graph exist. 

Case: 3  and  

Since , G is complete and hence . Thus , so that . The converse is 

obvious.  

 

 

Theorem 3.7 Let G be a connected graph then,  if and only if G is isomorphic to 

 or  or  or  or  or , where  such that the edge induced subgraph 

 is a star and  or . 

 

Proof. Let . This is possible only if (i)  and 

 or (ii)  and  or (iii)  and 

 or (iv)  and . 

Case.1  

Since , G contains a clique on  vertices or does not contains a clique on  vertices. 

Suppose G contains a clique K on  vertices. Let . 

Subcase 1:  

Since G is connected, every vertex in S is adjacent to atleast one vertex in K. 

Suppose all the vertices of S are adjacent to . Then  is set of G. Hence . 

Then  which is a contradiction. 

Suppose  are adjacent to a vertex  and . Then  is set. Hence 

, then  and hence , which is a contradiction. 

Suppose all the vertices of S are adjacent to distinct vertices of K. Let . Then  is 

set. Hence , then , which is a contradiction. 

Subcase 2:  

Let . Since G is connected  and  have neighbors in K. 

Suppose . Let . Then  is a set of G and hence 

 and , which is a contradiction. 

Suppose . Let . Then  is a set of G and hence 

.Then . If  or  or , then no graph exists. 

Subcase 3:  

Let . Then  is a set of G and hence . Then . Hence 

, which is a contradiction. 

Subcase 4:  

Let . Since G is connected, at least one vertex of S is adjacent to a vertex in K. Let 

. Then  is a set of G. Thus  and hence . Then  

and hence no graph exists. 

Suppose . Let . Then  is set of G. Hence  

and . It is clear that . Then  and . If  or , then no graph 

exists. 



Turkish Journal of Computer and Mathematics Education                 Vol.12 No 13 (2021), 5100-5105 

                                                                                                                                   Research Article  

5105 

 

If G does not contains a clique on  vertices, it can be verified that no graph exists. 

 Case.2  

Since ,  contains a clique  of order  or . Let K be a clique of order 

 in G. Let  

 Subcase.1  

Without loss of generality we assume that  for some . Then  is a set of 

G and hence . If  then  and hence  which is a contradiction. If 

, then  and . Hence G is isomorphic to  or . 

Subcase.2  

If , then . Hence  and . Thus . If , 

then  which is a contradiction. Thus  and hence . 

Let . Let  and . Then  is a set of G. Thus  

and . Hence G is isomorphic to either  or . 

Suppose . Then  and hence  which is a contradiction. 

Case.3  

Then G contains a clique K of order . Let . Since G is connected there exists a vertex 

 such that . Then  is a set of G. Thus  and . Hence G is 

isomorphic to  where  such that the edge induced subgraph  is a star and 

. 

Case.4  

Since ,  is a complete graph. But for complete graph , , so that  and hence 

. The converse is obvious.  

 

 

 

Conclusion: 

 

In this paper, we introduced the concept of -Connected domination number of graphs and obtained its bounds. 

We also showed the relation between set with connectivity and chromatic number of graphs. 
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