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Abstract: In this study, the discontinuity of the voltage source inverter is considered when controlling 

Polysolenoid motors using model predictive control. When considering the instantaneous voltage across the 

motor with a non-ideal converter, the set of control voltages is finite and depends on the converter configuration. 

This is based on the finite control set model predictive controller (FCS MPC). When a finite set of voltage 

vectors is determined for the stator, the control signal processing capability of the system is significantly 

improved. Simulations are performed to illustrate the responsiveness of the force loop using the FCS-MPC 

method. 
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1. Introduction 

The rectilinear motion, which uses a linear motor, can durable operates and achieves higher efficiency 

than the indirect linear motion. Linear motors are developed based on the working principle of rotating electric 

machines. The outputs of a linear motor are position and thrust. Linear motors produce displacement and thrust. 

However, the working principle is classified into many types based on physical properties, such as linear 

asynchronous motor [1-5], linear synchronous motor [6-11], etc. Polysolenoid linear motor is a permanently 

excited synchronous motor with a tubular structure. The working principle of Polysolenoid linear motors can be 

found in [12-21]. Researches on linear motor control are mentioned in many documents [22-29]. The sliding 

control method is implemented in [22-24]. In [22], an enhanced sliding control structure improves the system 

accuracy in the high-speed region. The advantages of this method are that the system is stable quickly, and the 

control structure is simple. A sliding controller combined with an input noise observer is implemented for the 

outer loop structure [23]. An adaptive-gain sliding mode observer is used in [24] in position control without 

using a sensor. The Lyapunov stability theory proves the stability of the sliding mode observer (SMO). A fuzzy 

PID controller, implemented to improve the response of traditional PID for PLMSM, is proposed in [25]. In 

[26], the extended state observer observes noises and dynamic disturbances of the system. Then, the predictive 

function controller (PFC) controls the motor speed. An iterative learning control to improve the positioning 

accuracy of a permanently excited linear motor in the high-speed region is implemented in [27]. The 

compensation algorithm consists of a PID component and an adaptive component for estimating friction. The 

adaptive component is continuously refined on the basis of just prevailing input and output signals [28].  In [29], 

a 4-layer neural network structure to improve position accuracy is implemented. In the above studies, we see 

that the influence of the motor power supply on the dynamic response of the system has not been properly 

considered. In this study, the discontinuity of the voltage source inverter due to the nature of the electronic 

components is analyzed in detail for its ability to generate thrust response for the Polysolenoid motor. Next, the 

predictive control method with discontinuity of the converter is implemented to evaluate the responsiveness of 

the force loop. 

 

2. MPC Preliminaries 

Model predictive control (MPC), started in the late 70s, has made significant progress. The concept of 

"model predictive control" not only specifies a specific control strategy but also provides a class of control 

methods based on using the model of the control object to obtain a minimum cost function. The relationship 

between the traditional optimal control and the MPC is to use the concept of the cost function to form the 

control strategy. The concept of "predictive" here is the estimation of the system behavior in the future 

(predictive range) through which a suitable control signal can be given. Different from the traditional optimal 

control, the optimal solution of MPC is established based on solving given optimization problems. Therefore, it 

is challenging to react to uncertain system changes such as noise, model error, etc. The optimal control signal 

based on MPC is a series of control signals in which each element sequence represents a control signal at a 

specific kth time. The optimization problem is repeated at every cycle with the latest information about the 

system. Fig. 1 shows the basic configuration of the model predictive control system. 
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Figure 1: Structure Diagram of MPC. 

 

To illustrate the MPC control structure, we consider a discontinuous system 
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3. Design of FCS-MPC for the Current Loop 

The Polysolenoid motor considered in this study belongs to the group of permanently excited 

synchronous linear motors with a short stator structure. The structure of the motor is shown in Figure 2. 

 

 
Figure 2: Polyslenoidlinear Motor [13]. 

 

The mathematical model of Polysolenoid engine on the 𝑑𝑞-coordinate system is given as below [21]: 
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From (1), we derive the continuous current model of the Polysolenoid motor on the 𝑑𝑞-coordinate 

system as 
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The discrete-time stator current model of Polysolenoid motor is: 

( ) ( ) ( )1dq dq dq pk k k + = + +i Φi Hu h                                        (3) 

From the above discrete-time model, we build a predictive model with ( )est

dq k i+i is the predicted current 

value at the next i-th cycle compared to the current time. From the (3), we have: 

( ) ( ) ( )1est est

dq dq dq pk i k k i k k i + + = + + + +i Φi Hu h                                                    (4) 

The selected objective function has the following quadratic form: 

( )( ) ( )( )
1

| |
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T
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dq dq dq dq
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J k i k k i k
=

 = − + − +
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Where Np is the prediction range. 

Solving the optimization problem by the FCS-MPC method can be done quickly with a finite number 

of loops. However, the number of iterations will increase exponentially in the prediction range, which leads to a 

significant increase in computation time and loss of the advantage of the method. Therefore, in this case, we 

choose the prediction range as 2.pN =  

 

 
Figure 3: Distribution of the Basis Vectors of the Inverter Circuit According to FCS-MPC. 

 

The optimization problem is now reduced to the form: 
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Satisfy:  
1 2 3 4 0, , , ,..., ,dq S S S S Snu U Ru Ru Ru Ru Ru u  

Where 
iSu is the stator voltage vector generated by the switching state iS , as illustrated in Figure 3, 0u

is the zero sequence voltage vector, 
ref

dqi is the reference current vector. 
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4. Simulation Result 

Motor parameters are described in Table. 1. 

 

Table 1: Motor Parameters 

Motor Parameters Symbol Value Unit 

d-axis stator inductance Lsd 1.4 mH 

q-axis stator inductance Lsq 1.4 mH 

Stator resistance Rs 10.3 Ω 

Rotor flux ψp 0.035 Wb 

Number of pole pairs zp 2  

Pole step τp 0.02 m 

 

Simulation is performed with the current sampling time ( )100iT s= . Responses of the FCS-MPC 

current regulator to a change in the current loop reference value as shown in Fig. 4 and Fig. 5. 

 

 
Figure 4: iqCurrent Response. 

 

 
Figure 5: idCurrent Response. 

 

Comment: At the time of changing the 𝑞-axis current value, the 𝑞-axis current value tracks the 

reference value, as shown in Figure 4. The 𝑑-axis current value is also returned to a value close to 0. The 

tracking error of 𝑑-axis current value is insignificant, as depicted in Figure 5. The current pattern of the FCS-

MPC method has a non-smooth form and has an unnoticeable amount of overshoot. The response current value 

still adheres to the reference value precisely, indicating the selected number of base vectors meets the 

requirements. To improve the current smoothness, we can increase the number of base vectors. 

 

5. Conclusions 

When applying the FCS-MPC control method for Polysolenoid motors, we find that with discontinuous 

objects such as power converters, the FCS-MPC is an effective method. It offers a completely different 

approach to power converters. Besides, the technical characteristics of the controller also proved to be very good 

compared with existing control methods. This method is based on a finite number of possible valve 

combinations of the power converter. Similar to other MPC controllers, FCS- MPC also needs an objective 
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function 𝐽 so that suitable valve combinations can be selected. The advantage of FCS-MPC over classical MPC 

methods is that the optimal solution is always guaranteed to have a solution, and the number of computations is 

significantly reduced. 
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