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Abstract: Evolution of online technologies and usage resulted in massive data collection, analyzing and visualizing such huge 
data through graphs has become one of the interesting areas of research.  The Big graphs created for massive data are very 
huge and cannot be processed by a simple machine at an adequate amount of time any-more. So the Big graphs are to be 
partitioned and stored on different machines to process and analyze them quickly.  Traditional graph partitioning methods can 

no longer does this task since it follows of-fline processing and requires to store and access the entire graph from one machine 
leading to memory bottlenecks and also  time consuming.  Hence, Streaming Graph partitioning methods have gained 

momentum and these methods can partition real time online graphs directly and efficiently.  Streaming graph partitioning me-
thods takes stream of edges along with its end vertices as input into a Scheduler machine.  The scheduler machine intern 
partitions the graph and assigns the nodes and edges to different partitions as re-ceived. Since entire graph cannot be made 
available to the scheduler machine at any given point of time, it assigns edges to partition ma-chines based on using some 
partition criteria that may not be optimal. Scheduler’s decision can be notably improved if partitioning is done only after 
receiving sufficient information of the node or edge being allocated. This paper recommends an efficient Buffer-based edge 

streaming algorithm called SVBP for graph partitioning. This method implements the idea of delaying the assignment of few 
edges and restream them at right time to improve partitioning effi-ciency. Our method uses a Buffer to store the edges whose 
partition-ing is delayed. The SVBP algorithm is evaluated on real-time power-law graphs that are notably large.  Our method is 
able do the job of partitioning efficiently on all the graphs by keeping the replication factor minimum and balancing the load 
across partitions legitimately good compared to other algorithms. 
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1. Introduction  

In this big data era, Machine learning and Data mining with versatile massive datasets have dragged attention 

from researchers and business people. In particular, recent years have seen the advent of bulky real-time graphs in 

areas like Social networking (Twitter and Facebook), Road and Telecommunication networks etc.,[3][4] and this 

kind of Large-scale graphs cannot be controlled and processed by one  machine because of memory bottlenecks 

and time constraints. Hence, abundant research works happened in this regard resulting revolutionary changes in 

handling large-scale graphs.  Rather than struggling to handle large graphs as a whole [3], people started to divide 

and distribute them onto several partition machines before processing. Subsequently Graph partitioning attracted 

many researchers interest and is most craved area of study in Big data domain. 

Graph partitioning come under NP-Complete problem and majority of naturally created graphs exhibit power-

law degree distribution. Traditional graph partitioning methods are offline and needs whole graph to be kept 

before partitioning that incurs lot of memory bottlenecks and time delays[2].   Streaming graph partitioning 

methods are grabbing attention now a days as these methods accept flow of edges and nodes as input from online 

graphs and does distributed processing and segregating.  If the parts of graph is distributed among several 

machines then computation cost will be high in general.  Hence, the aim of Streaming Graph partitioning is to 

diminish the communication rate and also maintain load balancing in every partition nearly equal. The streaming 

graph partitioning method is called efficient if communication cost is low and Load balancing is nearly equal in 

all partitions[1].  The two frequently used steaming partitioning methods are edge cut partitioning and vertex cut 

partitioning as explained in Figure 1.  Edge cut partitioning receives flow of graph vertices as input and divides by 

cutting the edges and assigning the vertices to separate partitions. The ambition of Edge cut partitioning is reduce 

the cross-partition edges and maintain the load balancing across the partitions. Contradictorily, Vertex cut 

partitioning receives flow of edges as input and divides by cutting the vertices (replicating the vertices) and 

assigning the edges to separate partitions. The ambition of vertex cut partitioning is to diminish the count of 

replications of vertices (Replication Factor) and maintain balanced load across all partitions [10]. Majority of real-

time graphs display power-law mark scattering, that means majority of vertices have relatively few neighbors and 

a very few vertices have more count of neighbors [5][6].  This paper emphases on Vertex cut partitioning 

methodology due of the point that in case of Power-law distributed graphs, Vertex cut partitioning models are 

serving better compared to Edge cut partitioning.  Actually majority of the available methods like HDRF, DBH, 

S-Power Graph etc., are single-pass algorithms and produces balanced partitions to a fair extent [4][5][19].  But 
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the fruitfulness of dividing can be further enhanced by partitioning edges only when sufficient neighboring node 

information is supplied to the scheduler [7].  This can be accomplished by keeping such edges whose neighboring 

data is inadequate to partition in a Buffer and re streaming them after specified time limit. S-Power Graph 

algorithm is one-pass algorithm designed for natural skewed power-graphs that produces balanced partitions with 

minimum vertex cut.  S-Power Graph is an enhanced version of adapted Power Graph algorithm. S-Power Graph 

algorithm generally tries to soothe the partitions and it may assign edges to inappropriate partition as it cannot 

guess the pattern of future graph. 

This paper suggests a Stream-Based Vertex cut partitioning with Buffer support for Power-law graphs (SVBP) 

algorithm to obtain enhanced partitioning ability and to minimize Replication Factor while keeping load balance 

approximately equal on all partitions.  SVBP method accomplishes this by delaying the partitioning and placing 

the edge whose neighboring data is lacking in a Buffer, where buffer space is adjusted as per the convenience of 

Scheduler’s memory availability. Also, the edges kept in Buffer window are re streamed into the Scheduler 

machine for partitioning after specified time limit. The edge assignment will be delayed whenever enough of 

neighborhood vertices are not processed till then. 

The main contributions of this paper are briefly outlined as follows: 

• Better Load Balancing among partitioning machines. 

• Reducing superfluous vertex replication by delaying the edge assignment if enough of its neighbor 

vertices have not yet visited. 

• Introducing Buffer window to keep unallocated edges whose assignment decision is postponed. 

• Better Partitioning is attained by holding the edge in  Buffer until enough of information is received. 

The paper is structured as follows. Our reading on the related work and the current advancements in streaming 

graph partitioning is expressed in  section II, Problem formulation of Vertex cut streaming graph partitioning, 

Methodology and assumptions are deliberated in section III, Our recommonded  SVBP architecture, Algorithm 

and methodology to add and delete edges of buffer is deliberated in section IV. The dataset, evaluation setup and 

Investigational results are analyzed in Section V. Lastly, Conclusion is provided in Section VI. 

 

Fig. 1.  Partitioning the graph into three parts using Edge cut and Vertex cut Partitioning 

2. Related Work 

This section is all about our study related existing research on Streaming graph partitioning. During the past 

few years, online streaming Big graph partitioning attracted many researchers interest [2]. Immense growth of big 

graphs accelerate the advent of streaming graph partitioning. The very first streaming graph partitioning method 

was developed by Stanton and Kliot in the year 2012. This method introduced simultaneous  receiving and 

partitioning the graph.Considering edge cut vs. vertex cut streaming algorithms, we review two groups of 

streaming graph partitioning algorithms namely: edge cut and vertex cut partitioning [8].In general majority of 

real-time comprehensive graphs exhibit power-law degree dissemination by nature and many researchers 

established the point that vertex cut partitioning algorithms perform better than edge cut partitioning algorithms in 

case of power-law graphs.   

Edge cut Partitioning  

In online (streaming) edge cut partitioning algorithms, vertices arrive in sequence and the algorithms assign 

them to different partitions [7]. Majority of  streaming algorithms are single-pass algorithms and they prohibit 

partition refinement after assignments.  Spatio-Temporal Interaction Networks and Graphs Extensible 

Representation (STINGER) provides a basis for analyzing structured graph data and facilitates  experimenting and 

advancements in the area of big data and big graphs by providing a dynamic graph data structure. Stinger 

facilitates addition and deletion of edges from scale-free graphs and quick query processing[14].  Planted Partition 

Model is another edge-partitioning method recommonded by Tsouraksakis to improve partion quality by using 

complex stretch walks for partitioning.  To minimize inter partition communication in low complexity structures 
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and to accommodate faster query processing, Wang and Chiu developed one more mountable streaming 

partitioning system.   

Ja-be-ja is another distributed vertex swapping method developed by Rahiman et al.  This method is built 

based on local search and reduces inter partition communication and is appropriate for sparse network[11]. 

Leopard is another light weight edge cut partitioning method recommonded for streaming and restreaming 

vertices from a dynamic graph[23].  This method facilitates addition and deletion of partitions also. 

Stanton et al. studied different heuristics, and noticed the best enactment with the linear deterministic greedy 

(LDG) heuristic. This model assigns vertex with relatively more neighbors to one common partition, and the 

algorithm weights the assignment by a penalty function built on the dimension of the partitions. FENNEL is 

another online streaming edge cut partitioning algorithm intended for maximizing the modularity[9].  Fennel's 

basic concept is to interpolate between maximizing the co-location of neighboring vertices and minimizing that of 

non-neighbors. WStream is another Window-based one-pass streaming edge cut  partitioning algorithm designed 

for large-scale graphs that minimizes communication cost across partitions and balances load among 

partitions[17]. 

Vertex cut Partitioning 

In online streaming vertex cut graph partitioning algorithms, edges arrive in sequence and the algorithms 

distributes  those to partition machines. Majority of these algorithm are one-pass algorithm and they prohibit 

partition refinement after assignments.  Greedy-heuristic and DBH are innovative streaming vertex cut graph 

partitioning algorithms. HDRF, S-Power Graph are two partitioning algorithms developed subsequently for 

proficient partitioning of Power-law graphs by with improvised load balancing and minimized vertex replication. 

However, these methodologies are centralized and don’t scale neither horizontally nor vertically[12][13]. 

Following HDRF and S-Power Graph, IOGP and CLDA takes benefit of both HDRF and greedy methods. CLDA 

uses HDRF technique for high degree vertices and applies greedy technique for low degree vertices. IOGP uses 

edge cut algorithm for low degree vertices and vertex cut algorithm for high degree vertices.  In addition, 

HoVerCut[4], RBSEP, ADWISE are popular efficient edge partitioning methodologies developed recently[18].  A 

mountable streaming multi threaded graph partitioning algorithm Hovercut provides both vertical and horizontal 

scalabity with buffering technique to stake incoming edges.  When it comes to dynamic graphs Hovercut doesn’t 

suit and bring out efficiency deprivation over period of time[2].  SGVCut is another vertex cut partitioning 

method for  specially developed for random walks foundation that tries to minimize replication factor and inter 

partition communication to the level possible[17].  ADWISE is the window-based streaming partitioning method 

specially designed to increase partitioning quality and reduce partitioning time by adjusting window capacity 

according to processing speed of the partitioning[16]. 

This paper recommends a Stream-Based Vertex cut partitioning with Buffer supportalgorithm; edges are 

streamed to the scheduler machine. The scheduler verifies if the end vertices of the processing edge has enough 

neighbors to take decision of assigning, if no sufficient neighbors then all such edges will be kept in Buffer 

window.  The edges kept in Buffer window gets examined for sufficient neighbors periodically and allocated to 

Partition machine accordingly. The edges must be retained in Buffer only for specified time limit.  If time limit 

exceeds then such edges will be restreamed to the Scheduler machine to allocate them to emptiest partition 

machine. There by the edge assignment can be delayed until sufficient neighbors gets streamed ad allocated to en 

route for better partitioning.  Our model is designed apparently that edge assignment is done at right time to 

acquire improved replication factor and load balancing. The edges are getting streamed and re streamed multiple 

times before partitioning with buffer support. Therefore this technique achieves significant betterment in reducing 

vertex cut since the choice to allocate an edge has major effect on its upcoming coupled edge from the buffer. As 

per our observations and study, this model is completely new and not used anywhere. 

Table. 1.  The notation used in the paper 

Symbol Description 

 

G Input graph 

E collection of Edges of G 

V collection of vertices of G 

k Total count of partition machines considered 

𝝺 count of edges to be handled by scheduler before restreaming edges from buffer 
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MAXV Maximum time limit that edges can reside in  Buffer 

𝛿(v) degree of  vertex v 

S(v) collection of partitions in which vertex v  is replicated 

P(k) Current collection of edges be held by kth partition 

PID IDth partition is denoted by PID 

C Buffer capacity 

3. Problem Formulation 

In general majority of natural real- life graphs display power-law degree distribution. Which  means maximum 

of the vertices have comparatively few neighbors, whereas a very little vertices have a plenty of neighbors and the 

probability of a vertex having d is demarcated as  

P(d) ∝ d-α 

where α denotes a small positive constant that controls the degree.  

Vertex cut Partition 

The algorithm explained here follows vertex cut partitioning strategy[5].  Suppose we have Graph named G = ( 

E,V) where V indicates collection of vertices  and  E indicates collection of edges, then k-way vertex cut 

partitioning of the Graph G into collection of k partitions  P = (p1, p2, . . …, pk ) is done so that specific vertices G 

is replicated in multiple partitions denoted by set S(V) and S(v) ⊆ P. Finally, the allotment of vertices is done 

apparently that the count of vertices replicated (Replication Factor  ) is minimum and all existing the partitions 

gets allocated with approximately equal load of edges(Load balancing). 

Min 
𝟏

|𝑽|
∑ |𝑺(𝒗)|𝒗∈𝑽   such that 𝐦𝐚𝐱

𝒑∈𝑷
|𝑬(𝒑)|<Ω |𝑬|

|𝑷|
 

Where Ω≥ 1 denotes small positive constant to specify the method acceptance to load balance.  Note that here 

in streaming graph partitioning, continuous flow of edges are passed as input data to the scheduler for partitioning.  

Edge Streaming Methodology  

We appraise a streaming partitioning framework in which edges arrive in a stream and each edge appears only 

one time in the stream[5][19]. The edges arrive along with end vertices. Moreover, every time a vertex arrives 

together with few of its edges. For SVBP, the order that the vertex arrives is most predominant since it can 

influence the enactment of the methods significantly. In our streaming setting, the vertices arrive in a definite 

order with all of their out edges arriving in a probable order. The vertex stream is received by scheduler in the 

below specified three different orders that are measured as a standard from existing works: 

• Random (Rnd) order:  Here the vertices arrive into the scheduler  in a random order specified by a 

random permutation of the vertices. 

• Breadth First search (BFS) order: A starting vertex is selected from the graph and new vertices arrive 

if they are found by a breadth first search. 

• Depth First search (DFS) order: DFS works in a same manner like BFS ordering except that depth- 

first search will be used. 

Data Processing Model and Assumptions 

We consider that graph edges are read online in streaming fashion.  It is presumed that, we cannot access the 

whole graph at once, and therefore, we cannot perform global operations. Additionally, since we do the 

partitioning job along with reading online graph, the degree of individual vertex is not identified in advance. The 

degree supply is disclosed gradually when the graph edges arrive in stream. Therefore we can only have access to 

subgroup of edges besides its aggregate values that are streamed till then. Replication factor(RF) may be identified 

as the overall count of vertices replicated divided by the total count of vertices[20][21].  This RF will be 

minimized by cutting more high degree vertices. Reason for this is that when the degrees of vertices are under the 

power-law distribution, there will be numerous vertices with small degree and a comparatively few vertices are 

with high degree. So if choices are available, we always choose to cut a vertex with relatively higher degree. 

The recommended method is an improvisation of S-Power graph algorithm by adding buffering mechanism 

with an inkling of delaying partitioning decision. To produce well-organized buffering strategy, the buffer 

dimension is adjusted in harmony with scheduler’s memory space. This is being done due to inadequate buffer 
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space. The scheduler machine receives flow of edges as input and assigns them either to some partition machine 

or keep them in buffer relying on the obtainability of edge information and end vertices data. This mechanism is 

depicted in Fig. 2. 

4. SVBP Architecture 

Our system has four major components namely Scheduler Machine, Partition Machine, Buffer Window and 

Vertex table as illustrated in Figure 2.  We used an Edge Stream Generator that receives edge stream from online 

graph and send to Scheduler for partitioning.  The Scheduler contains our partitioning algorithm SVBP that 

considers edges one after the another from the flow of input edges supplied, processes the edge and assign to 

available partition machines.  Vertex table contains already allocated vertices data together with their degrees and 

allocated partition details of S(V) pertaining to edges that are already allocated. This Vertex table gets updated 

each time the edge is allotted to partition machine. This information is needed for allocation of  future edges that 

arrive as input stream. Figure 2 illustrates the structure of recommonded model. 

• Scheduler Machine: Scheduler receives stream of edges as input from the taken from the online graph. 

Scheduler considers one edge at a time and does the job of partitioning.  Scheduler makes use of Vertex table 

information while placing the edge in  desired partition machine. Suppose e is the edge considered with end 

vertices  Vi and Vj. Consider S(Vi) and S(Vj) values from Vertex table.  S(Vi) indicates collection of partition 

machines inside  vertex Vi is replicated and S(Vj) indicates collection of partition machines inside vertex Vj is 

replicated.  If both S(Vi)=Ø and S(Vj)=Ø then the edge is moved to Buffer by delaying the choice of assigning 

that edge. Otherwise edge may be allotted to partition  PID calculated using Algorithm 1.   

• Partition Machine: Each partition Machine receives allocated edge from the Scheduler machine and  stores. 

Partition machines intern communicate among themselves to sustain the existing parameter values. 

. Vertex Table:  Vertex table Contains info related to allocated vertices.  Soon an edge is allotted to Partition 

machine, its end vertices details gets updated in the Vertex table. Vertex table stores partial degrees of assigned 

vertices and set S(V) in which vertex V is replicated.  Vertex table gets updated after every edge partitioning.  

.Buffer Window:  Buffer window contains collection of edges whose assignment is postponed.  Whenever 

sufficient neighboring data is deficient for edge assignment,  those edges must be kept waiting in Buffer window 

until either sufficient information is obtained or it reaches to MAXV waiting time.   

 

Fig. 2.  SVBP Architecture 

The recommended model makes use of S-Power graph algorithm. As formerly mentioned S-Power graph is 

one-pass algorithm that has a good enactment on skewed power-law graphs.  S-Power graph algorithm is an 

enriched version of Greedy algorithm on Power graphs, it prioritizes cutting those vertices that have the highest 

degree[15]. However, unlike Greedy, S-Power graph considers Score value for partitioning.  These models can 

stream the edges only once and the edge assignment made once cannot be modified.  Moreover the edge streaming 

and assigning is done depending on partial neighboring information obtained till then.  Even if sufficient info is 

not obtainable, these models are compelled to assign edges to partition that can never be changed. Since the graph 

is processed online, the unseen part of the graph is revealed in future.  Therefore the enactment of the partitioning 

model can be improvised by delaying the assignment process of the edge till enough of neighboring information is 

gained and restreaming all such edges by retaining them in Buffer window.  The edges of the Buffer can be 

restreamed into the scheduler multiple times until its time limit gets expired. The assignment decision is taken 

when sufficient neighboring info is available or time limit gets expired.  This way our algorithm improvises the 

partitioning process as illustrated in Fig.2. 

The Scheduler machine receives stream of edges as input and considers edge by edge, makes use of Alorithm1 

and Algorithm 2 to calculate ID value.  Edge e is distributed to the partition PID.  We believe in delaying the edge 
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allocation when sufficient neighboring data is lacking, this could lead to an improvised partitioning. Our regular 

partitioning algorithms like DBH, HDRF, S-Power graph, Greedy etc., forcibly chooses to allocate the edge to 

some existing partition due to which the replication factor increases[20]. However, the partitioning mechanism 

can be improvised by delaying allocation process to future until the maximum percentage of the graph has been 

noticed. In this paper, we recommend an improvisation to S-Power Graph algorithm by adding buffer window and 

multiple streaming mechanism that helps to delay the edge allocation decision. The buffer window size is adjusted 

based on scheduler’s buffering capacity and hence efficiency is improved. 

Methodology for adding edge into buffer window for restreaming 

Soon the edge enters into the scheduler machine, the Algorithm retrieves information related to end vertices of 

that edge from vertex table associated with Scheduler machine. Suppose e is the edge considered with end vertices 

Vi and Vjand the neighboring information collected from Vertex table may fall into any of the  following three 

cases. 

Case1: Neither of the edge vertices Vi and Vj are assigned till then. That means S(Vi) ∪S(Vj)=Ø  

Case 2: Either of the edge vertices are already assigned to some partition machine.  That means S(Vi)∪S(Vj) 

ǂØ  

Case 3:  The edge vertices have some common partitions allocated. That means S(Vi)∩S(Vj) ǂØ. 

Case 2 and Case 3 works similar to S-Power Graph and  edge e gets allocated to partition PID as per the 

processing done by Algorithm 1.   Case 1 leads to sending edge to Buffer by delaying assignment process since 

sufficient neighboring information of end vertices is at hand for partitioning at this instant.  Hence, it is preferable 

to delay the partitioning decision and reconsider at later stage as discussed in Algorithm 2. 

Methodology  for deleting an edge from Buffer to restream: 

As discussed in section 4.1, all the edges whose assignment decision got delayed to are kept in Buffer window.  

It is always wise to delay the edge allocation whenever enough of neighboring data is lacking and assign later so 

that better partition can be attained.  The edges kept in Buffer are reconsidered for streaming after streaming 𝝺 

edges by the scheduler.  After processing every 𝝺 edges, the scheduler takes edge from buffer and allocates based 

on conditions specified in Algorithm 2.  The edges kept in Buffer are considered by Scheduler machine for 

restreaming periodically after processing every 𝝺 number if edges from online stream.  When the edge taken from 

Buffer is restreamed into Scheduler machine, it will again check if enough of neighboring information is present, 

if so it assigns to partition machine otherwise the edge must be retained back into buffer for future streaming.  

Like this the edge kept restreamed for multiple times until the time limit MAXV is reached.  The Buffer can retain 

edges only for time limit of MAXV after that the scheduler is forced to allocate it to barest partition as explained 

in Algorithm 2.  There must be a counter maintained with each edge deposited in Buffer that gets updated 

periodically.  Whenever the counter exceeds MAXV value then the Scheduler is compelled to assign it to emptiest 

partition even though sufficient neighboring info is not attained.  The whole process of deleting an edge kept in 

buffer can be illustrated with two cases as given below: 

Case 1: After processing  𝝺 edges suppose the Scheduler wants to reexamine edge kept in buffer then it will 

use Algorithm 1 that checks if  any of  end vertices are by now allocated(i.e. S(vi) ǂØ or S(vj)ǂ ∅ ), if so the edge 

will be partitioned to PID estimated based on Algorithm 1.  

Case 2:  During restreaming, if the end vertices have not yer placed in some partition and the edge cannot be 

retained in buffer anymore (i.e. S(vi) =Ø and S(vj)= ∅ ), at that moment the edge must be assigned to the barest 

partition decided by  Algorithm 2.  

The SVBP Algorithm 

Here we present SVBP, a Buffer based algorithm tailored for skewed power-law graphs. Our partitioning 

scheme tries to place each strongly connected component with low-degree vertices into same partition by cutting 

high-degree vertices and replicating them on several partitions. This assists to diminish communication cost 

among partitioning machines by reducing count of vertex replications.  Though, procuring degrees of allotted 

vertices in an online streaming fashion is difficult our algorithm achieves best results because whenever sufficient 

neighboring information is not procured, the partitioning decision gets delayed.  Since the complete graph is not 

admitted formerly  and edges are getting streamed from online graph as input,  a Vertex table with partial degrees 

of the vertices  and  collection of partitions where all that allocated vertices gets replicated ie., S(V)  can be 

maintained.  The Vertex table is continuously updated while input is streamed and assessed. Whenever Scheduler 

machine chooses to allot an edge to  partition machine, the vertex table gets updated with the matching end 

vertices degree values and allocated partition sets. Sometimes the scheduler cannot take optimum assignment due 
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to lack of neighboring information of edge’s end vertices then it  delays the decision of assigning to future so that 

better partitioning is attained.  All such vertices must be kept in Buffer for restreaming.  

More formally, when processing edge e ∈ E connecting vertices vi and vj, the SVBP algorithm retrieves their 

partial degrees and increments them by one.  

In this paper, we observe two partitioning algorithms. We define each of them as follows. 

Let P(k) denote the current collection of edges pertaining to the kth partition,  

and  let [p] = {1…. p}. We define 

maxedges = max
𝑘∈[𝑝]

{|𝑃(𝑘)|}     and    minedges = min
𝑘∈[𝑝]

{|𝑃(𝑘)|}        (1) 

We refer to a certain partition by its index ID. Then the IDth partition is denoted by PID. 

The two partitioning  algorithms we considered are Random and Balance  works as below:. 

Random:  The random method simply assigns each edge via a random hash function as implemented in 

PowerGraph. So it is the most naive algorithm. The edge e is allocated to PID where ID is decided by: 

ID = hash(VL)                              (2) 

hash(VL) here is a randomized hash function. 

Where VL =  argmin D(w) , where w∈ {𝑉𝑖, 𝑉𝑗} 

Balance: A new constraint called Balance is added to avoid imbalance. This modified version plays a major 

role as baseline which demonstrates the enactment of the Power Graph partitioning instead of  greedy algorithms, 

when allocating an edge, each algorithm will first compute a Score for each partition. It is the partition with the 

maximum Score that the edge will finally be allotted to. 

Score(k) = 1{if k∈ S(Vi) otherwise 0} + 1{k∈S(vj) otherwise 0} + balance(k);      

     (3) 

Where  k∈[p]    and  

balance(k) =
𝑚𝑎𝑥𝑒𝑑𝑔𝑒𝑠−|𝑝(𝑘)|

𝑚𝑎𝑥𝑒𝑑𝑔𝑒𝑠−𝑚𝑖𝑛𝑒𝑑𝑔𝑒𝑠+1
                            (4) 

where  P(k) denote the current collection of edges belong to the kth partition 

if
max

𝑖
|𝑃(𝑖)|

𝑎𝑣𝑔 |𝑃(𝑖)|
≥1.1,then the edge e is allocated to PID here ID is computed by: 

ID = argmax {balance(k)}                    (5) 

k∈ [𝑝] 

otherwise the edge e is allocated to partition PID here ID is computed by: 

ID = argmax {Score(k)}                    (6) 

k∈ [𝑝] 

________________________________________ 

Algorithm1:  Buffered_Stream 

Input: vi, vj, k 

Output: partition p 

1. get collection of partitions S(Vi) where vi is reflected from vertex table  

2. get collection of partitions S(Vj) where vj is reflected from vertex table 

3. If S(Vi)=Ø and S(vj)= Ø then  

      Insert edge in to Buffer by delaying the partitioning and wait for next edges. 

else 

4.   Calculate maxedges and minedges using equation (1) 
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5.  Calculate Balance value using equation (4) 

6. Calculate Score value using equation (3) 

7.    Find the highest Score value ID  using equation (5) or (6) 

8. Assign the edge e to the partition PID 

9.   Update degree of Vi  and degree of Vj in vertex table 

    10.  Add Partition p into S(Vi) and S(Vj) in vertex table 

11.  End if 

___________________________________________ 

Algorithm2:   Remove_Buffer 

Input: Vi, Vj, counter 

Output: partition p 

1: if count>=𝝺 then 

 2.     Retrieve S(Vi) and S(Vj) from vertex table 

 3.     If S(Vi)ǂØ or S(Vj)ǂØ then 

4.        Call Buffer_stream(Vi,Vj,k) 

 5.    Else  

6.      Find emptiest partition PID from S(Vi) ∪ S(Vj) 

 7.       if(Count_ViVj> MAXV * 𝝺) then 

 8.              Assign edge to the barest partition PID 

 9.         Else 

 10.            Keep edge e in buffer     

 11        End if 

12.Else 

13.  Keep edge e in buffer 

14.End if 

15. Repeat steps 1 to 14  and update count_ViVj at regular intervals. 

5. Experimental Evaluation 

In this segment we valuate and relate the enactment of our SVBP method with HDRF, DBH, Greedy-heuristic 

and S-Power graph methods. With a view to achieve this we implemented the suggested algorithm together with 

other algorithms of specified methods in Java and evaluated their efficiency on real massive graphs.  In this 

segment, we first give a sketch of evaluation settings like datasets used, evaluation methodology followed. Also, 

we endorse the efficiency metrics used and lastly, we talk about the obtained results. 

5.1  Datasets 

The graph datasets used for our trials are considered from snap website (Stanford large network data collection 

(SNAP), http://snap.stanford.edu/data.  All the considered graphs are unweighted and undirected.  Since all 

considered graphs are real-life graphs, all graphs follows power-law distribution.  Table 2 exhibits the details 

pertaining graph datasets used for our efficiency evaluation. 

Table 2.    Characteristics of Datasets 

Name of  

Dataset 

Count of  

vertices 

Count of 

edges 

Type 

facebook 22,470 1,71,020 Social Network 
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Amazon 3,34,863 925872 Product Network 

Enron 36,692 183,831 Communication Network 

CondMat 23,133 93,497 Collaboration Network 

Brightkite 58,228 2,14,078 Location based online 

social network 

Github 37700 289003 Social network 

AstroPh 

 

18,772 198,110 Collaboration network 

Eather-

Deezer 

28,281 92752 Social network 

5.2  Efficiency Metrics 

The Efficiency metrics considered for evaluating our  model is provided below:  

i) Replication Factor  

ii) Load Balancing factor and 

iii) Partitioning Efficiency.. 

Replication Factor 

Replication factor measures the count of vertices replicated among multiple partitions.  It is accustomed to 

approximate the communication cost across multiple partitions. Replication factor may be stated as the aggregate 

count of vertices replicated divided by total count of vertices. The replication factor will be minimum if we 

replicate less count of vertices.  As per power-law distribution, the real-life graphs we considered contains fewer 

count of vertices with higher degree and larger count of vertices with smaller degree[11][13]. Therefore better 

replication factor is attained by replicating vertices with higher degree rather than replicating vertices with smaller 

degree.  So only in our graph partitioning algorithms we always try to choose to cut a vertex with relatively higher 

degree. 

Finally, the replication factor indicates how many vertex copies an edge partitioning algorithm creates. We 

calculate it as follows: 

RF =
𝑇𝑜𝑡𝑎𝑙 𝑉𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑝𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
 

The mathematical form of replication factor is can be represented as below: 

RF = 
1

|𝑣|
∑ |𝑆(𝑣)|𝑣∈𝑉  

Where, |V| indicates total count of vertices of a graph and S(v) indicates collection of partitions in which 

vertex V gets replicated. The Partitioning quality is said to be good if Replication factor value is approximately 

nearing to 1. In our evaluation process we calculated Replication factor for all the real-life graphs that are 

considered. 

Load Balancing Factor 

Load Balancing factor is yet another measure for evaluating the graph partitioning manner. Load balancing 

indicates how well the edges load is distributed across multiple partitions.  The algorithm aims to attain balanced 

load on all partitions.  Load balance factor is calculated with the formula given below. 

max
𝑝∈𝑃

𝐸(𝑝) < Г
|𝐸|

|𝑃|
 

where |E| indicates total count of edges  and |P| indicates  total count of partition machines across which the 

graph edges get distributed.  E(p) indicates total count of edges allocated to partition p and Г indicates  Load 

balancing factor  that displays the degree of satisfactory deviation from the balance.  The load is considered to be 

well balance ifГ  is small.  The above inequality illustrates the acceptable count of vertices that can be allotted to a 

partition to attain better load balancing[14].  The above inequality can be rewritten as below to calculate Load 

balance factor. 

http://snap.stanford.edu/data/email-Enron.html
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Г = max
𝑝∈𝑃

𝐸(𝑝) ∗
|𝑃|

|𝐸|
 

Partitioning Efficiency 

Partitioning Efficiency is measured using Time complexity and Space complexity analysis.  Time complexity 

is calculated by counting execution time from the begin of  partitioning process till the end. Since our SVBP 

algorithm receives online edge stream as input, Time needed for input to arrive is moreover necessary. In general 

edges gets processed only once and few edges whose assignment decision is delayed gets moved to buffer.  Worst 

case analysis is considered if more count of edges decision gets delayed or if edges take little extra time to arrive 

at the scheduler.  But trials illustrated that better partitioning is carried out by delaying the allocation process. So  

Time complexity of our algorithm is  O (n + m* 𝝺) + O (p* C *s log k), here n indicates count of edges streamed, 

m indicates  count of edges whose decision is delayed and hence kept in buffer and p indicates count of restreams 

happened.  Likewise 𝝺 is count of edges streamed to scheduler before processing an edge deposited in buffer, k 

indicates count of partitions and s indicates  the partition count C indicates buffer capacity. 

Space Complexity is nothing but amount of space occupied by our algorithm to complete execution[9][16]. 

The space complexity of our algorithm is almost same as S-Power graphs algorithm. Although buffer one added 

feature to our algorithm still its space complexity is same as HDRF since the space needed by buffer is adjusted 

based on scheduler capacity.  Space engaged by Vertex table is same as HDRF algorithms Vertex table. 

5.3  Evaluation Scenario 

The productivity of our SVBP algorithm is evaluated on different datasets specified in Table2, results are 

analyzed and matched with HDRF, DBH, Greedy technique and S-Power Graph methodologies in section 5.4.  

The results evaluation analysis is done for the parameters specified in section 5.2.  Unlimited streaming model is 

used to stream the input of graph edges into the scheduler.  Various possible combinations of partitions with 

varieties of  datasets are used in our evaluation process. The trials are conducted with varied window sizes, varied 

partitions and varied datasets. Different Buffer window sizes considered are 100, 200, 300,400,500, 600, 700 and 

800.  Different count of partition machines used are 2,4,8 and 16.  Different datasets used are mentioned in table 

2.  All these datasets are considered from snap.  The results are valuated by changing count of partitions and 

Buffer capacity. 

Experimental results  

The evaluated experimental results presented as follows:  Productivity of  SVBP algorithm is assessed 

concerning to replication factor, Load balancing and Execution time.  We first evaluate the effect ofreplication 

factor on different real world datasets by considering 8 partition machines conferred in section 5.4.1. We then 

evaluate recommonded method on different graph datasets with varied Buffer sizes and varied count of partition 

machines deliberated in section 5.4.2.  We then evaluated load balance of SVBP on diverse datasets for Buffer 

size 16 deliberated in section 5.4.3. Effect of MAXV on replication factor is deliberated in section 5.4.4.  

Productivity of our SVBP algorithm for different input dimensions is conversed in section 5.4.5. Effect of 

different input stream order on replication factor is conferred in section 5.4.6. 

Throughout our evaluation process we considered the value of   as  5 and Buffer capacity as 100, 200, 400 

5.4.1 Effect of Replication Factor on different Real world datasets 

We have executed all five algorithms namely SVBP, HDRF, DBH, Greedy and S- Power graph on different 

datasets considered from snap by keeping count of partition machines as 8.  The replication factor calculated for 

all five algorithms are compared and the results are validated in Figure 3.  Our SVBP algorithm produced better 

replication factor over HDRF, DBH, Greedy and S- Power graph.   
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Fig. 3. Effect of Replication Factor on different Real world datasets 

Effect of different Buffer size on different datasets  

Buffer is used to maintain all those edges whose partitioning is delayed. We executed our SVBP algorithm on 

deliberated datasets separately with varied buffer sizes. The replication factor generated for each buffer size on a 

specific dataset is noticed and the results are illustrated in Figures 4a, 4b,4c,4d,4e,4f,4g and 4h.The SVBP 

algorithm intended to utilize the Buffer space to provide efficient partitioning efficiency by delaying partitioning 

decision. The results of Figure 4 demonstrates the consequence of different Buffer dimensions on the splitting 

efficiency of SVBP algorithm. It is anticipated that as the buffer size increases the partitioning efficiency also 

becomes better that generates better Replication factor. Because if the Buffer size is larger then more count of 

edges partitioning can be delayed and it leads to better partitioning.  Smaller the replication factor, more efficient 

the algorithm becomes Anyway, as communicated in Figure 4, in some exceptional cases all algorithms resulted 

in  a higher Replication Factor for the bigger Buffer volumes than the lesser ones. Balance parameter is calculated 

while partitioning. To maintain the partitions balanced our algorithm defines another parameter called score which 

plays major role in deciding partition machine to which the edge gets allocated. The scheduler always assigns the 

edge to a partition with thoroughgoing Balance or Score values.  Figure 4(a) illustrates that the SVBP algorithm 

performs better on Facebook dataset for 4 partitions and 16 partitions in diminishing replication factor.  Figure 

4(b) demonstrates effect of replication factor on  Amazon dataset for varied buffer sizes with varied count of 

partitions. We notice that the algorithm gave better results for count of partitions  4 leading to better efficiency. 

Figure 4(c) demonstrates the SVBP algorithm out performed on Enron dataset  with Buffer size 700 for all 

partition counts.  Figure 4(d) demonstrates the effect ofreplication factor on the Brightkite dataset with a different 

count of Buffer window sizes and different partitions. We notice that for having count of partition machines as  4 

our algorithm achieves better outcome except for Buffer size 400 and Buffer size 700, which obtains a somewhat 

higher Replication Factor, otherwise the Replication Factor declines the Buffer size escalates.  As showcased in 

Figure 4(f) and 4(g) for datasets Condomat and AstroPh our SVBP algorithm outperformed in sinking the 

Replication factor  since the Buffer size increases. We notice that, for Facebook dataset, partition count 16 out 

performs other partition settings and Condmat datasets outperforms l for the  partition count 2. 
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Fig. 4 Effect of different Buffer size on different datasets 

5.4.3    Effect of Load Balancing 

Load balancing means all partitions must get loaded with nearly equal count of edges.  Load balancing is 

another powerful factor that decides the productivity of partitioning algorithm.  If the partitioning model is 

capable to distribute the edges to all partition machines equally then the load is declared well balanced and the 

technique is called an efficient one.  To evaluate the influence of load balancing on dissimilar datasets, we 

executed our SVBP algorithm with all datasets and correlated the results with HDRF, DBH, Greedy and S-Power 

graph.  The outcomes are talked about in Figure 5. The load balancing factor of our SVBP algorithm remains 

nearly the same with all datasets. If load balancing factor is 1 then the load is declared well balanced among 

partition machines.  All the methods maintained load balance around 1. Our SVBP algorithm maintained almost 

same load balancing on all methods due to implementation of buffer window and delaying the partitioning 

whenever the edge doesn’t have sufficient neighboring information. 
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Fig. 5.  Influence of Load balancing on dissimilar datasets 

5.4.4 The influence of the MAXV on replication factor  

MAXV is the time limit defined to know how long the edge is retained in Buffer.  This parameter controls the 

act of recommended algorithm. The influence of MAXV on replication factor is deliberated in this segment by 

executing the algorithm on Facebook dataset.  The end result is revealed in Figure 6. The edge whose end vertices 

doesn’t get replicated in any of S(Vi) or S(Vj) will be kept in buffer for MAXV time.  The edge gets restreamed  

into the scheduler periodically after every 𝝺 count of edges gets processed.  The edge can spend MAXV time in 

buffer and once this time exceeds and still it doesn’t have sufficient neighboring information then the edge should 

get allocated to emptiest partition.  From the graph demonstrated in Figure 6, it is understood that the replication 

factor declines as the parameter MAXV increases.  So better partitioning can be attained if keep the edge for long 

time in buffer.  

 

Fig. 6The influence of the MAXV on replication factor 

5.4.5 Efficiency of SVBP for various input volumes 

Effectiveness of our algorithm for various input volumes is evaluated and the outcomes are demonstrated in 

Figure 7.  Our algorithm is capable to reach relatively smaller replication factor even for larger volumes of 

datasets.  As dipicted in figure, larger the input data, larger the replication factor also.  The replication factor got 

increased according to input size for all different datasets nearly in similar manner.  In fact as the input volume 

increases, the algorithm receives more neighboring information subsequently better partitioning.  Therefore as 

input volume increases, the buffer gets more count of edges whose assignment decision is delayed.    
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Fig. 7Efficiency of SVBP for various input volumes 

5.4.6 Influence of Input stream order on Replication factor 

In Figure 8, we compared the replication factor on different real-world graphs in different orders by SVBP 

algorithm.  Observing the graph we can state that out of three input stream orders Depth First search(DFS) order, 

Breadth First Search(DFS) order and Random order,  Replication factor also increased along with input size. Out 

of all three orders, the BFS order outperformed the other two. 

 

Figure 8Influence of Input stream order on Replication factor 

6. Conclusion 

In this paper we have studied streaming graph partitioning by passing Edge stream. Specifically, we have 

recommendeda innovative streaming graph partitioning method for Real graphs by adopting vertex cut strategy 

and called it SVBP.  Sometimes the partitioning decisions made by the existing streaming graph partitioning 

algorithms are not appropriate as they make partitioning only from the existing part of the graph that is received 

till then and the edges gets streamed in continuously.  Therefore the partitioning can be improvised with our 

algorithm.  Instead of allocating the edge in one-pass there and then it is streamed, it would be nice to delay the 

allocation of certain edges whose neighboring information is insufficient to make decision. All such edges whose 

assignment is delayed gets moved into a buffer window maintained. The edges  kept waiting in buffer until 

sufficient neighboring information is arrived and gets restreamed into scheduler periodically multiple times till it 

gets allotted to a partition. The buffer volume gets adjusted as per scheduler’s memory space.  As far as we know 

this is the first work to methodically study the effectiveness of vertex cut in streaming graph partitioning. Trials on 

big scale graphs prove that our method is more appropriate for partitioning skewed natural graphs than the 

previous approaches with satisfactory load balance and replication factors. Our method helps to partition either the 

raw graph data streamed online or graph data loaded from a storage device. In our upcoming work, we would love 

to pursue more variants of the suggested strategy theoretically and scientifically.  
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