Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 5327-5334

Research Article

Anomaly Detection in Data streams using MOA

G Sandhya Madhuri?, Dr. M. Usha Rani®

aResearch Scholar, ? Research Supervisor
a.b Dept. of Computer Science, SPMVV, Tirupati, India
asandhyamadhuri@gmail.com, ® musha_rohan@yahoo.com

Avrticle History: Received: 10 November 2020; Revised 12 January 2021 Accepted: 27 January 2021; Published
online: 5 April 2021

Abstract: Anomaly means anything which deviates from normal. It can be a credit card fraud or sensor alarm or a signal from
a condition monitoring device. A problem like anomaly arises when we try to monitor the unusual behaviour of a machine.
More number of outliers means the machine needs to be inspected. Anomaly detection in static data can be entirely different
from that of streaming data.

We have some issues in anomaly detection in streaming data when compared to static data. If any off — line algorithms attempt
to find anomalies in streams, it has to store the entire stream for analysis. So, there is a high probability that it will run out of
memory space.

Also, streams can be infinite and evolving over a period of time because of which maintenance of high detection accuracy
becomes almost impossible. In this paper we will discuss about anomaly detection in data streams and using MOA (Massive
Online Analysis) tool we will analyse which algorithm derives best results.

Keywords: Massive Online Analysis, data streams, outliers, outlier detection algorithms
1. Introduction

Data streams are universal, ranging from sensor data to web data and clickstream data. Subsequently, there is a
rich and increasing body of work onstream data mining.

Anomaly detection using simulation helps us examine the anomaly examples from big data source. In order to
increase the speed of the processing time to handle massive datasets, in this paper we have demonstrated the
experiments conducted on advanced distant-based outlier detection algorithms to inspect the most effective
algorithms using MOA.. The algorithms used in this study are Continuous Outlier Detection (COD), Micro-Cluster
based COD or MCOD, Exact STream OutlierR Miner (Exact STORM), Approximate Stream Outlier Miner
(Approx STORM), AbstractC algorithms. The results demonstrate MCOD algorithm can surpass other algorithms
in terms of processing time and precise anomaly detection.

We have MOA (Massive Online Analysis) an open source frame work for anomaly detection in data streams.
The key advantage of MOA is that it provides many recently developed data stream algorithms, with learners for
multi-label classification, graph mining and outlier detection.

2. Moa Framework

The aim of MOA is a standard framework for running experiments in the data stream mining context by
proving

. storable settings for data streams (real and synthetic) for repeatable experiments
e aset of existing algorithms and measures form the literature for comparison and
. an easily extendable framework for new streams, algorithms and evaluation methods.

MOA Framework
data feed/ learning evaluation
EEemerator " algorithm ‘ method * Resufts ‘
+ 4 5
Extension points |
Fig 1: MOA workflow

The workflow in MOA follows the simple outline as shown below:
. First a data stream (feed, generator) is chosen and configured.
. Second an algorithm (e.g. a classifier) is selected and its parameters are set.
) Third the evaluation method or measure is chosen.
. Finally the results are acquired after executing the task.

MOA supports stream classification, stream clustering, and outlier detection[1].

5327



Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 5327-5334

Research Article

3. Outlier Detection In Moa

The Outliers graphical interface can be seen below. The image shows the environment where we setup any two

algorithms to analyse on a data stream that is generated by MOA using RandoRBFGeneratorEvents data stream
generator.

MOA Graphieal User Interface

fers |

Fig 2: MOA Outliers: Setup
The setup contains of three parameters:

1. Data stream
2. Algorithm 1
3 Algorithm 2

We have to use Edit option to change any of the above mentioned parameters.

Now, let us see the editing options of Algorithms.

—_— Editing option: Algorithml
Classific

Setup |r.|ass moa.clusterars, outliers. Angiulli. ExactsTORM -

Crublier

Stra

rading "J.].+

algorith
K =0
Algorith S ear
queryFreq 1=
Slarl waitl'{inr-uhl
windowsize Jubiul autliees wher wirsdows is L ugo=
| Help ” Heset to defaults
Canael

Fig: 3 Setting the parameters for each algorithm

In the above figure we can observe that to analyse the any two algorithms, the user should first select the
algorithm and then change the values of each parameter of the chosen algorithm. If we move the cursor over the
names of the parameter, a message box appears describing each parameter[2].

Once the algorithms are selected and parameters are set. The user needs to observe the Visualisation tab, where
he can visually see both the algorithms result. The below figure shows the Visualisation tab before the user
presses start button.

5328



Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 5327-5334
Research Article

Proa, araphical weer imerface
Sluasilizalon | Clowlwing © Sulivis
Seluz | Wesalzalan

i _I.;”I il BERTN T
st |[numuw_| * Emae] = et T

Fig: 4 Visualisation tab

In this tab, the user can change many options like display options i.e. either points or outliers. Also, options
like wait till the window is full so as to display outliers. The user can also change the visualisation speed,
dimensions of the points that are displayed and the value of the pause interval.

Now, let us observe Fig: 5 in which the visualisation of each point in the data stream is displayed in the two
areas (screens) allocated for each algorithm. The screen with red colour represents the Algorithm 1 and the screen
with blue colour represents Algorithm 2.

The graph at the bottom of the visualisation window shows the time taken by the algorithm to process each
data point in the stream.

y-axis represents time per object

x-axis represent eachwindow slide.

L ros araghlcal uzer inkerface
el B et onaBis |

it
Sehup CauAlTatisn

Fawums || Smawn.. KB Lo Wil SRenl g wsziaze
| E Outiey S WaTminrl =
s 1 ° ]
1! o .
¥z #Z.
1 -
% e
< iy .
.. . *r f)
£ -
L k i 7 : B o

wEY
.

Fig: 5 Visualisation tab displaying the data points and outliers

After 1000 window slide, that means the pause interval specified by the user, the visualisation pauses for the
user to notice the outcome from each algorithm. We can observe that red coloured points are the outliers and the
grey coloured points are inliers or normal points.

The user can also observe a red circle around some outlier points. This indicates that this particular point has
been changed from an inlier to an outlier. In the same way we can also observe a black circle around some grey
points which indicate that this particular point was an outlier and now has been changed to an inlier. Observe Fig:
6

If we click on any outlier point a popup window is displayed showing information about that point. Such
information is specific to algorithm[3].

5329



Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 5327-5334
Research Article

- - - W - ®
L . s o
. _t""":... . .
" L - " L
i a5
. - = F
b ¢
Ll L]
L] .ﬁ
Y
L
_ Yo L
- h:&- outlier information e |
. Node type:  Outlier
* “ pim: 0152
. DimE [N E]
. T T e

Evalu count_after: 1
Froc| |nn_before;: 2

E

G.C0 |

Fig: 6 Outlier information

We can continue the analysis by pressing resume button, and observe the visualisation of outliers. To stop the

visualisation we have to press stop button.
ML Graphical lU=er Interiare
Clamsilivaliun - Choilsrineg I Clulli=ns
Fehp | Wnnlaran |

Fanllien Brle linn S bypaitho Krlog
Siramm CAcAse T GeneraorTaenky | rdr |
filgarBhml  MCOOHTDY FdF

dilgarbhm? énzho ) SeseisThEH 1 Tlmar

| Sl | L :}l mEdil BRSOt FoHO Exf

wie L. ;.".'\.'\.'.".- Lima sar
Thn oA, peveres Fiee aer
e 1. pruoess Lime a2
Thn A, poves Fies e
Bopred e 1. pruocss Liee aon

Blenrd el Slulibive:

Hony wlmgs dnlder: 40 (n4 00

Heees s lwsym parklos=: 57 5. ™)

Moot Loth doldes o watlicr ot fow &l
ar i)

Teiwl wres s 2137
LR T A o T
el preesm Domsr COEE me

forees [he2 Slulislica:

Mocay wlwwry anloee: 245 1245

Heeee slesge arfliss, 23 (2 ®)

Moeay Lol anbaws wed oallom 226 (0% owi
R i)

Tetal merage qetaT 1053
[ ER LY TR TP T G
Tetal poeessn hiwe 557

Fapinrt ma 4o His.. |

Fig: 7 Setup tab with statistical information
After this, we can observe some statistical information about each algorithm in the setup tab as in the Fig:7.
The information includes processing time, Total range queries, Maximum memory usage, information about
nodes that are inlier and outlier.

4. Analysis Of Data Stream In Moa

We have taken the stream generator by RandomRBFGeneratorEvents in MOA tool and tested MCOD
algorithm with all the other algorithmsliii]. Given below is the screenshot of the parameters set for the data stream
generator.

5330



Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 5327-5334
Research Article

s varey e sseew

Mcamen W
B e L R T S P T T = | -~

O
1
vt Bontov baad \
~gw
T 3
g '
e o o .
e e e g '
Mgark berrmt oo son
Avgart
aAlgeri
Agerd L o 51
argert
Meari Sora myllangs 3182
Algert
Algery
Alger) ‘omedt Yoo
aAvgert
J - . dwlaur
aronrd realy Reret 1o detaui
et
Tres cone
rals

Mus ey el 104 -
PrAL BrOceRs Fises 1% -

AVgnr LTS WA AAT s

Nobes alwwvs dnlin ol 7T

Fig: 8 Parameters in Stream Generator
In the above figure Fig: 8 we have set the parameters such as number of clusters that can be formed are 6, the
Kernel radius as 0.071, Range of the radius as 0.13 etc. Using these parameters, a data stream is generated with
sliding window size as 1000[4].
Now let us examine the results of each algorithm we have tested with MCOD. Observe the figures below.

1. MCOD and Abstract C algorithms

Cramli

Canieztnfegnaabn  Clueie

s

A S0

! B g
s s g G G

Fig: 9 Visualisation of MCOD and Abstract C

Outiier Detection Algarithm Setup

Stream 1ts —K 6 -R 0.071 -r 0.13043 -d 0.15217 -n Edit
Algorithml MCOD.MCOD Edit
Algorithm2  AbstractC.AbstractC Edit Clear
Start Stop Import Export Weka Explorer

Algorithm @, process time per object (ms): @.796
Algorithm 1, process time per object (ms): 5.498
Algorithm @, process time per object (ms): 8,955
Algorithm 1, process time per object (ms): 5.547
Algorithm @, process time per object (ms): 1.077
Algorithm 1, process time per object (ms): 6.236
Algorithm @, process time per object (ms): 1.204
Algorithm 1, process time per object (ms): 6.457

Algarithml Statistics:

Nodes always inlier: 1483 (70.2%)
Nodes always outlier: 233 (11.7%)

Nodes both inlier and outlier: 364 (18.2%)
(Sum: 2080)

Total range queries: 1115
Max memory usage: 583 MB
Total process time: 9.53 ms

Algorithm2 Statistics:

Nodes always inlier: 1403 (78.2%)

Nodes always outlier: 233 (11.7%)

Nodes both inlier and outlier: 364 (18.2%)
(Sum: 2088)

Total range queries: 2000
Max memory usage: 583 MB
Total process time: 6.31 ms

Fig: 10 - Comparison of MCOD and Abstract C
We can clearly observe that in the above two algorithms, almost all the parameters of the two algorithms are
same except the processing time per object. Clearly MCOD has less processing time compared to AbstractC.

5331



Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 5327-5334

2. MCOD and Approx STORM algorithms

R | o X 01 B g
8 e
St v Om1 [§ 06

ammy zmoax

Fig: 11 Visualisation of MCOD and Approx STORM

Classification  Regression  Cl

e
Outlier Deteetion Algorithm Setup
Stream ats -K 6 -R 0.071 -r 0.13043 -d 0.15217 -n _ Edit
Algorithml  MCOD.MCOD Edit
Algorithm2  Angiulli. ApproxSTORM Edit Clear
Start stoy Import Export Weka Explorer
Algorithm 0, process time per object (ms): 1.032
Algorithm 1, process time per object (ms): 4.937
Algorithm @, process time per object (ms): 9.862
Algorithm 1, process time per object (ms): 2.777
Algorithm 8, process time per object (ms): 0.785
Algorithm 1, process time per object (ms): 2.152
Algorithm @, process time per object (ms): 0.889
Algorithm 1, process time per object {ms): 2.543
Algorithml Statistics:
1403 (78.2%)
: 233 (11.7%)

Total range queries: 1115

Max memory usage: 567 MB

Total process time: 8.55 ms
Algorithn2 Statistics:

Nodes always inlier: 1378 (68.9%)

Nodes always outlier: 239 {12.0%)

Nodes both inlier and outlier: 383 (19.2%)

(sum: 2008)

Total range queries: 2000

Max memory usage: 567 M8

Total process time: 3.16 ms

Export ¢

Fig : 12 Comparison of MCOD and Approx STORM

Research Article

If we observe the above two figures we can clearly understand that the Memory usage of both the algorithms it
is same. Also, we can see that the number of Outliers found is also approximately same for both the algorithms.
But, if we observe the processing time per object MCOD has outdone Approx STORM algorithm[5].

3. MCOD and Exact STORM algorithms

] O Craphical Lsas IntiTac

Clussifcaban  Regression  Ouilirieg USRS Concagd Diilt
seve [

Mo | Sewrsbot % Dimd B g s Visualation Sped | o200
[ WathnFul
[ iy Dmz [ B Ourles Panein 1000
v ] . *
Lt Pt ' vt
I o A E
g} v Vo4 ¥ LY
P Lo s o 3
A N
Il '.-‘ |.I|"G.' v .‘ L
| . ..
L} . " L}
N " Y
h ;
Baliation
Pracess tle par bt
Inomin¥ Toom o ¥ Toom in &
m h
1w
'/l
1) 4= T T T T r r T
i o e ey i i " i ™ il ) ™

Toom et X

5332



Turkish Journal of Computer and Mathematics Education

Vol.12 No.6 (2021), 5327-5334

Research Article

CuTher Detecticn AlgoSrRRm SeTup

Abgorithm 1

Streanm s —K 6 R D071 —r 4.13043 —d GL1S2AT —n Edfit
[ =T W Tt Ediic
Angiulli ExactSTORM Exfit Clear

Abgorithmz

Starn Irmpart Export E
Algorithm 8, process Cime per object [msl: 1.284
Algorithm 1, process time per object [msli 4.163
Algorithm 8, process time per object (msli 1.329
Algorithm 1, process time per object [msli 421631
Algorithm @, procsss time per object (msl: 1.1l48
Algorithm 1, proce=ss time per object (msl: 4. 842
Algorithm @, procsss time per object [msl: 1.274

Algorithm 1, process time per object
Algorithml Statistics:

Modes @always inlice: 1403 (70.2%

Mocdes always outlier: 233 (11.7%

Modes BOth Anlier amnd outlier: 36 (18- 2%)
LSum: Zoael

Teotal range queries: 1115
Max menary usage: STS MB
Total process time: @.78 ms

Algerithm2 Statistics:

Modes alwaws inlier: 1483 | 7@.2%k
PModes alweys outliers 233 (21_Fsk

Modes both inlier amd owotlier: 364 (18, 2w)
: Teael

Fig: 13 — Visualisation of MCOD and Exact STORM

Classification

Total
P

range queries: 268

memory usage: STH MB

Total process timec: £.98 m=

o T ST I e T v
Clustersng  [ES

Wisualization

Regression

Export as _twme File

Fig: 14 Comparison of MCOD and Exact STORM
By comparison of these two algorithms we have observed that the outlier detection, memory usage etc are all

e ey e ee—p——
Clasticnon  Asgeshe  Cunreivng [RNEREN Costem Dt
I sl |

Waaahuaion Spend

similar except processing time. MCOD is the faster in processing when compared to Exact STORM[6].
4. MCOD and Simple COD algorithms

tame | Soeebl & 08l B g Frocasiaet 1000

p Wiy Gin2 [ Bos B Fusnn e i)
II II
Exahiion
i e per bl

foam in ¥ Eaer ot ¥ Towmind f——
L

/

i
(2 Lo T T T T T T T

1 1 i e o = e m ¥mn 1 " e i

Fig: 15 Visualisation of MCOD and Simple COD
Classification  Regression  Clustering I

Outlier Detection Algorithm Setup

Stream s K 6 —R 0.071 —r 0.13043 —d 0.15217 —n Edit
Algorithml  MCOD.MCOD Edit
Algorithm2  SimpleCOD.SimpleCOD Edit Clear
Start Stop Import Export Weka Explorer

Algorithm process time per object (ms):

Cms) s

Algorithm 1, process time per object (ms):
Algorithml Statistics:

Nodes always inlier: 1483 {76.2%)

Nodes always outlier: 233 (11.7%)

Nodes both inlier and outlier: 364 (18.2%)
(Sum: Zeea)

Total range gueries: 1115
Max memory usage: 574 MB
Total process time

Algorithm2z Statistics:
Modes always inlier: 1483 (78.2%)
(110 7%)

Nodes both inlier and outlier: 364 (18.2%)
(Sum: 2000}

Total range queries: 2eee
Max memory usage: 574 MB

Total process time: 6.94 ms

B visualizacion

Export as _txt file..

Fig: 16 Comparison of MCOD and Simple COD

5333



Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 5327-5334

Research Article

If we observe the comparison of these two algorithms we see that all other aspects like memory usage and
outlier nodes are similar except the processing speed. MCOD is faster than Simple COD. Thus, we conclude that
MCOD is faster in its processing speed when compared to all other algorithms, even though all other parameters
are similar.

5.

Conclusion

During our analysis in finding the best algorithm in MOA in case of processing time, outliers, inliers, memory
usage etc., we have concluded that MCOD is the best possible algorithm.

References

1. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive Online Analysis,” J. Mach. Learn. Res.,
2010.

2. S. V. V. Reddy, T. Harshita, S. A. Koneru, and K. Ashesh, “Outlier detection in data streams using
MCOD algorithm,” 2018, doi: 10.1109/ICATCCT.2017.8389156.

3. P.T. Darshana Parikh, “Data Mining & Data Stream Mining — Open SOURCE Tools.pdf,” Int. J. Innov.
Res. Sci. Eng. Technol., 2013.

4. Bifet, G. Holmes, and B. Pfahringer, “MOA-TweetReader: Real-time analysis in twitter streaming data,”
2011, doi: 10.1007/978-3-642-24477-3_7.

5. P. M. Arunkumar and S. Kannimuthu, “Mining big data streams using business analytics tools: A bird’s
eye view on MOA and SAMOA,” Int. J. Bus. Intell. Data Min.,, 2020, doi:
10.1504/1JBIDM.2020.108761.

6. M. J. Bah, H. Wang, M. Hammad, F. Zeshan, and H. Aljuaid, “An effective minimal probing approach

with micro-cluster for distance-based outlier detection in data streams,” IEEE Access, 2019, doi:
10.1109/ACCESS.2019.2946966

5334



