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Abstract: Present study is associated with verifying convergence property of Triple Laplace transform (TLT). 

In this work the new theorem is proposed to verify the convergence. The TLT is applied on the function and the 

result is verified with standard result and TLT is also applied to verify solution of Volterra-integro partial 

differential Equation (VIPDE) under certain initial conditions and the result obtained are found comparable with 

standard. 
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1. Introduction 

Partial differential equations (PDEs) play a very important role in the real life problems (Widder, 

2005), but PDEs are much harder to solve than ordinary differential equations. There are many PDEs like Wave 

equations, Heat equation, Laplace equation and Integro differential equations etc (Gupta et al. , 2013),[ 

Rogers], [Wazwaz, 2010]. Integro differential equations have many applications in Engineering, Physics, 

Chemistry and Mathematics. Particularly Volterra − integro is one of the important differential equations which 

play the role in nuclear reactions , circuit analysis, glass forming process, nano hydrodynamics etc.  

There are many methods used for solution of VIPDEs. For example Volterra − integro differential 

Equation has been solved by He’s Homotopy Perturbation Method (Shhed, 2005) and Moghadam used the 

differential transforms, Fahim et al. used sinc-collocation method and Abdul-Majid Wazwaz used combined 

Laplace transform–Adomian decomposition method. 

The Laplace transformation is a very useful and effective technique for solving such type of partial 

differential equations with initial and boundary value problems and mainly utilized in engineering purposes for 

system modeling in which a large differential equation must be solved, which was introduced by Laplace in 

1782 by Widder.  

In 2008 Adam Kilicman extended the Laplace transform to the concept of double Laplace transform . 

This concept has been successfully used for solving some kind of differential equations (Eltayeb et al. 

2013)(M. Idrees, 2018),(Ozel, 2012). Recently in 2013,  Abdon Atangana  also extended the double Laplace 

transform to the concept of triple Laplace transform and this new concept of triple Laplace transform, also 

works very effectively for solving such kind of partial differential equation involving triple integrals by (Elzaki, 

2019), (Khan et al. , 2020),( Khan et al. , 2018), (Mousa et al. , 2019). 

The main aim of this research work is to extend the concepts of triple Laplace transform and to solve 

Volterra-integro partial differential equations using triple Laplace transformation. 

 

2. Basic Definition and Theorems 

Definition 2.1 Laplace Transform : The Laplace transform denoted by the operator (.)L  defined by 

the integral Equation.  

 −


 <,0)(=)(=)]([
0

tdtetfSFtfL st
 

 

Definition 2.2 Triple Laplace Transform: Let f(x,y,t) be a continuous function that can be expressed 

as convergent infinite series , then triple Laplace transform of f(x,y,t) is defined as  

 dxdydttyxfeFtyxfL tyx ),,(=),,(=)],,([
000

 −−−


                                             (1) 

Where 0>,, tyx  and ,  ,    are Laplace variables and  
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is the inverse Laplace transform denoted by
1
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−

tyxL .  

 

Theorem 2.3 The integral  

dxdydttyxHe tyx ),,(
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                                                                                                     (2) 

Converges at ,< 0  0<   and .< 0  

If ),,( tyxH  is continuous function in the positive of the tyx ,,  plane and it’s integral converges at 

,= 0  0=   and .= 0   

Proof. We have  
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Let us consider the integral  
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Now In order to prove that the (2.3) converges at 0=   

Consider  
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By using Fundamental theorem of integral calculus, we have equation (4)  
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Here, we apply the Integrating by parts theorem, we have  
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If we take  𝜖 → 0 ,then second term vanishes   

 dytyxetxe
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This shows that the Equation (5) converges if 0<   

Similarly, we can show that the integrals  

dxtyxHe x ),,(
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 &   
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 both converges at 0<  and 0<   respectively 

Making use of expressions (5),(6), and equation (7) , Expression (2) converges at 0< , 0<   

and .< 0  

 

Theorem 2.4 If  
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Proof.We consider 
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By the use of Fundamental theorem of Integral calculus, we have 
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With 0=),0,( txh  Applying the Double Laplace transform on both sides of expression (10) we have  
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 with 0=,0),( yxr  Again by using Fundamental theorem of calculus, we have 
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Making use of the Double Laplace transform, we obtain  
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Similarly if we take  
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Making use of the expressions (11),(13) and (14) , we obtain  equation (9).  

 

3. Application 

Example 3.1 Consider the Volterra-integro partial differential equation as  
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Subject to the initial conditions  

0=),(0,0,=),0,(0,=,0),,( tyVtxVyxV                                                                                  (16) 

Solution:Appling the formula of triple Laplace transform on both sides of equation (15 )we have  
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 Using initial condition (16), we obtain  
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simplifying, we get  
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 Making use of the inverse triple Laplace transform on both sides of the expression (17) we have  

xyttyxV 4=),,(  

This gives an exact analytical solution to (15), in which the same solution obtained by other existing 

methods. 

 

4. Conclusions 

 This paper intends to show the applicability of the Triple Laplace transform to obtain the solution for 

Volterra-integro partial differential Equation with initial conditions. It concludes that the Triple Laplace 

transform is very powerful, effective and efficient tool. The obtained result, by this Triple Laplace transform 

method is found matched with exact solution obtained by other existing methods. We also examined and 

verified the iterative procedure for fast convergence and using TLT method, solution for VIPDE has been found. 
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