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Abstract—Simultaneous Localization and Mapping (SLAM) is technique that is used to perform mapping and 

identifying the position of oneself in an unknown or unfamiliar region. This technique is being extensively 

investigated for application in areas such as autonomous vehicles, robotics, virtual reality and augmented reality. 

This paper first provides an overview of SLAM technique and explores a few existing visual SLAM algorithms 

(ORBSLAM2, ORBSLAM3 and DynaSLAM). After this, the performance of these algorithms on 

benchmarking datasets such as KITTI, TUM and EUROC is analyzed by considering parameters such as 

absolute and relative pose error. The plot of ground truth and estimated trajectory for these algorithms are also 

shown in the results section of the paper. The analysis was done using a virtual machine running Ubuntu 20.04 

in AWS. A tabulation containing the results obtained from the evaluation tool is presented in the results section 

of the paper.  
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I. INTRODUCTION  

The advent of technologies like autonomous vehicles [1][2], robotics [3][4], virtual and augmented reality 

[4][5][6] very often require some form of visual odometry or SLAM to perform their operations. Therefore, the 

research in this field has been very interesting especially in the past decade when several algorithms for SLAM 

were devised. As described before SLAM deals with creating a map of an unknown or unexplored environment 

and simultaneously knowing where the system is located in the environment. The need for SLAM arises due to 

the inaccuracies in GPS based methods which can result in issues while operating autonomous vehicles.  

 

The basic steps involved in a SLAM framework include odometry, landmark prediction and extraction, 

matching of data, estimating the pose, and updating the maps [7]. These are the most fundamental steps in any 

SLAM algorithm, and they are often executed cyclically.  

 

The basic steps often require a host of sensors for optimal operation, some of which are discussed here, in this 

paragraph. Acoustic sensors such as Sonar and Ultrasound have been tested and found to have some issues 

related to sensitivity and hence are not widely adopted [7]. The most popular sensor for SLAM is LIDAR based 

system. These systems are known for their accuracy and speed, and hence are widely used. However, these 

systems are very expensive and heavy and cannot be used for very small robots. Camera based systems are 

another choice for SLAM and these methods are called Visual SLAM techniques as they rely on the visual feed 

from the camera. There are three different versions in Visual SLAM, monocular, stereo and RGB-D. Monocular 

visual SLAM is very simple and is not highly accurate, stereo and RGB-D methods require more hardware setup 

than monocular SLAM but have better accuracy compared to monocular methods. 

II. OVERVIEW OF THE ALGORITHMS 

We analyze 3 algorithms in this paper: ORBSLAM 2, ORBSLAM 3 and DynaSLAM. All these methods are 

visual SLAM algorithms. A brief overview of these algorithms is provided in this section. 

A. ORBSLAM 2 

ORB-SLAM 2 is a SLAM algorithm that is used for real time performance on different camera configurations 

such as RGB-D, Monocular and Stereo [8]. It constructs the trajectory of the camera and a sparse reconstruction 

of the 3D environment. The algorithm performs loop closing, re-localization and map reuse. ORB-SLAM uses 

the monocular feature-based ORB-SLAM [11] for RGB-D and stereo configurations. Some of the prominent 

features of ORBSLAM 2 [8] are full Robot Operating System compatibility, out of box camera compatibility 

and map save and load capability. The system has three main parallel threads [], and they are: 

 

1. The tracking [8] basically performs feature matching and minimises reprojection error.  

2. The local mapping [8] for local map management and optimisation. 

3. The loop closing [8] for large loops detection and reducing the accumulated drift by using pose-graph 

optimisation techniques. 

 

 

Fig. 1. Figure shows the overall block diagram of the ORBSLAM 2 algorithm with its various modules. [8] 
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Fig. 2. Figure shows the input preprocessing step of ORBSLAM 2 [8] 

Figure 1 and  2 show the overall block diagram and the input preprocessing of ORBSLAM 2 algorithm.  

B. ORBSLAM 3 

 

ORBSLAM 3 supports 3 different variations of SLAM, namely: visual SLAM, visual coupled with inertial data 

SLAM [10][12] and multiple map [10] SLAM with the camera configurations already mentioned for 

ORBSLAM 2 [9]. It allows using both pinhole and fisheye lens models [18][19]. It provides multiple map 

system that depends on new place recognition method with improved recall [9]. This algorithm is best suited for 

large, small and open-door navigation. ORBSLAM 3 can survive for a long period of time with poor visual 

information. This is achieved by creating a new map of the region which will be integrated with previously 

generated map while revisiting the mapped regions. The ORBSLAM 3 architecture is similar to the ORBSLAM 

2 architecture, it provides certain additional modules such as: atlas [13], tracking thread, Local mapping thread 

and Loop and map merging thread [9]. Figure 3 shows the overall block diagram of ORBSLAM 3, this can be 

compared with Figure 2 for understanding the additional features added to ORBSLAM 2.  

 

 

Fig. 3. Block Diagram of ORBSLAM 3 showing the various steps involved for performing the SLAM operation 

which have been built on top of ORBSLAM 2 [9]. 

C. DynaSLAM 

 

It is a visual SLAM algorithm that has been built over ORB-SLAM 2. Dynamic object detection and 

background inpainting are the two additional features provided by this algorithm [14]. DynaSLAM performs 
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better in dynamic scenarios for the various camera configurations such as stereo, RGB-D and monocular. It uses 

a combination of multi-view geometry and deep learning to enhance its performance [14].   

 

Firstly, dynamic objects are detected by the use of a fully convolutional network called Mask R-CNN. With this 

technique all dynamic objects are detected a priori, but the moving objects are not detected. Secondly, dynamic 

objects are detected with a geometry method based on depth changes. With this method it is possible to detect 

the movement in the foreground of the scene. The combination of FCN and geometry approach results in 

optimal performance. Figure 4 shows the block diagram of DynaSLAM. 

 

 

Fig. 4. Block Diagram of DynaSLAM showing the various steps involved for performing the SLAM operation 

[14]. 

III. EVALUATION METHODOLOGY 

A. Hardware Setup 

 

We use a virtual machine in Amazon Web Servies for simulating the algorithms and for comparing the results 

produced by these algorithms. Listed below are the specification of the virtual machine: 

 

• Ubuntu 20.04 (Operating System) 

• 16 GB RAM 

• 4 vCPU 

• 1 NVIDIA T4 GPU (This GPU accelerates diverse cloud workloads, including deep learning training 

and interference and graphics). 

B. Software Dependencies 

 

We used the following software dependencies to install the SLAM techniques on the VM: C++ 11, Pangolin for 

Visualization and UI, Open CV 3.2 for Manipulation and feature extraction, Eigen 3.3 [17] for Linear Algebra, 

DBoW 2 [15] for Place Recognition, g2o [16] for Non-Linear Optimizations and Python.  

 

C. Benchmarking Datasets 

• KITTI Dataset: 

The KITTI dataset [20] is mainly applied for the benchmarking of outdoor environment recognition 

and navigation. It has stereo camera data, visual odometry data, optical flow data and data for 3D 

tracking and object detection. We are more interested in the visual odometry data for the analysis. This 

dataset consists of 22 sequences with ground truth data available for 11 sequences for evaluating 

SLAM algorithms. Development kits in C++ and MATLAB have also been provided for ease in 

accessing the data. The dataset has been collected using 2 colour and 2 grayscale video cameras, HDL-

64E (Velodyne) 3D laser scanner and GPS/IMU unit with RTK correction.  
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• EuRoC Dataset: 

The EuRoC dataset [21] is mainly useful for the benchmarking of Indoor navigation and mapping. The 

dataset contains camera images (stereo), IMU measurements which are synchronized and the ground 

truth for each frame. It also provides the raw sensor data and a calibration dataset. The stereo data has 

been obtained using a global shutter camera (Aptina) and WVGA monochrome camera. The IMU data 

has been collected using a MEMS IMU sensor. Ground-Truth data has been obtained using a 

combination of motion capture system and 3D laser scan.   

D. Evaluation Package and Metric: 

 

We use evo [22] – a python package for the evaluation of the performance of the chosen algorithms. It supports 

handling, evaluating and comparing the trajectory outputs of odometry and SLAM algorithms. It supports 

previously introduced datasets like KITTI, EuRoC MAV, TUM Monocular datasets and ROS (Robot Operating 

System) bag files with certain message types. The built-in plotting provides excellent visuals and it also 

provides an implementation of SE Umeyama alignment and scale that is usually required for monocular 

SLAMs.  

 

Evo can be used to compute RPE (Relative Pose Error) and APE (Absolute Pose Error).  The absolute pose error 

is a metric for evaluating the global performance of a SLAM trajectory whereas, the relative pose error is a 

metric for evaluating the local performance of a SLAM trajectory. For more in-depth explanation of these terms 

one can refer to [23][24][25][26]. 

 

The flow chart for performing the evaluation of the algorithms is shown in Fig 5.  

 
 

Fig. 5. Flow chart explains the steps involved in the evaluation process. 

IV. RESULTS 

The trajectory estimated by ORBSLAM 2, ORBSLAM 3 and DynaSLAM were obtained by running the 

algorithms on EuRoC and KITTI datasets. This trajectory was compared with the ground truth using the 

evaluation package and the RPE and APE were obtained. We used 3 datasets from EuRoC dataset (MH01, 

MH03 and MH05) for getting this result. MH01 is the easiest dataset and MH03 is the hardest dataset in the 

EuRoC datasets that we used. EuRoC dataset is not supported by DynaSLAM in its current form, so only 
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ORBSLAM 2 and ORBSLAM 3 were analyzed with the EuRoC dataset. Apart from this, we used the 3rd, 6th 

and 7th sequences in the KITTI dataset. KITTI 6 and 7 sequences have slightly more dynamic objects than the 3 

sequence. The RPE and APE tabulation (Table 1 and Table 2) and the trajectory (Fig 6 – Fig 11) obtained by 

running the algorithms along with the ground truth are shown in the following sections. 

A. Trajectory Plots  

 

Figure 5 to Figure 10 shows the trajectory plot for all the algorithms for both the KITTI and EuRoC dataset. 

Figure 6 to Figure 8 shows the KITTI trajectory for all three algorithms DynaSLAM (Blue), ORBSLAM 3 

(Green) and ORBSLAM 2 (Red) along with the ground truth (dotted grey line). This can be used to visualize how 

each algorithm performs by seeing the amount of drift of each path from the ground truth. Similar visualization 

can be done for EuRoC dataset shown by Figure 9 to Figure 11. In this ORBSLAM 2 path is shown in green, 

ORBSLAM 3 path is shown in blue, and the ground truth is shown by grey dotted lines. 

 

 
 

Fig. 6. KITTI 07 Trajectory for DynaSLAM, ORBSLAM 2 and ORBSLAM 

 

 

Fig. 7. KITTI 06 Trajectory for DynaSLAM, ORBSLAM 2 and ORBSLAM 3. 
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Fig. 8. KITTI 03 Trajectory for DynaSLAM, ORBSLAM 2 and ORBSLAM 3. 

 

Fig. 9. MH 05 Trajectory for ORBSLAM 2 and ORBSLAM 3. 

 

Fig. 10. MH 03 Trajectory for ORBSLAM 2 and ORBSLAM 3. 
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Fig. 11. MH 01 Trajectory for ORBSLAM 2 and ORBSLAM 3. 

Dataset Algorithm     max       mean     median        min       rmse        sse        std 

MH01(Easy) ORBSLAM 

2 

0.073915 0.039276 0.032392 0.002869 0.045008 0.407177 0.021980 

 
ORBSLAM 

3 

0.100175 0.044020 0.037867 0.005653 0.051226 0.650769 0.026197 

MH03 (Med) ORBSLAM 

2 

0.081756 0.033444 0.029104 0.007115 0.037015 0.217842 0.015861 

 
ORBSLAM 

3 

0.115592 0.044654 0.041981 0.005166 0.048893 0.499622 0.019914 

MH05 (Hard) ORBSLAM 

2 

0.116224 0.044392 0.041578 0.013740 0.049095 0.472416 0.020968 

 
ORBSLAM 

3 

0.101896 0.041247 0.037008 0.006401 0.044845 0.504782 0.017600 

KITTI 03 ORBSLAM 

2 

3.005655 0.989722 0.938982 0.244656 1.083792 317.143604 0.441651 

 
ORBSLAM 

3 

2.754388 1.013182 0.942783 0.189780 1.090998 349.941518 0.404648 

 
DynaSLAM 3.893154 1.432407 1.358638 0.334895 1.581656 675.441778 0.670707 

KITTI 06 ORBSLAM 

2 

24.436146 13.137696 14.117423 0.222167 15.021108 88222.772567 7.282488 

 
ORBSLAM 

3 

23.902323 13.288679 14.630621 0.408032 15.285470 89252.621936 7.553583 

 
DynaSLAM 23.424556 13.064751 13.649723 0.246729 15.088736 93800.024613 7.548659 

KITTI 07 ORBSLAM 

2 

4.397640 1.880293 1.803562 0.241955 2.175197 1883.129302 1.093608 

 
ORBSLAM 

3 

3.525272 1.669764 1.595881 0.151303 1.832031 1282.121116 0.753808 

 
DynaSLAM 4.685647 1.865652 1.541146 0.332128 2.173077 1827.515432 1.114273 
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B. APE and RPE Tabulation: 

TABLE I.  THIS TABLE SHOWS THE APE METRICS  

V. CONCLUSION  

After analyzing the APE and RPE table and trajectory plot of ORBSLAM 2, ORBSLAM 3 and DynaSLAM, it 

can be inferred that the performance of these algorithms is fairly very close, the differences between the error 

generated by one algorithm and another is very small. However, a general trend that can be seen is that 

ORBSLAM 3 performs better that ORBSLAM 2 in harder datasets. ORBSLAM 2 in other cases seems to 

perform better than DynaSLAM and ORBSLAM 3. However, the extra features supported by ORBSLAM 3 

such as support for various lens models and others mentioned in the section 2.2 makes it an interesting 

candidate. DynaSLAM too, seems to be performing quite close and might be a good option in highly dynamic 

environments. 
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