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Abstract: In this paper we introduce  Bδg separation axioms and study their basic properties.  

 We also studied  the relations between these axioms and Bδg closed sets and Bδg open sets We give necessary and sufficient 

condition for a singleton sub set of  closed  set to be  Bδg-T_0 space. Also we have given the equivalent condition for a space 

X to be a Bδg-T_1 space. A space X is Bδg-T_2 space if and only if for each pair of distinct points x,y∈X, there exists a Bδg-
clopen set containing one of them but not the other.  
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1. Introduction  

The relationships among the several separation axioms such as 𝐵𝛿𝑔-T0, 𝐵𝛿𝑔 T1, Bδg -T2, - are explored in the 

framework of topological spaces.  Separation axioms [1, 2, 3, 4, 5] in topological spaces are primarily formulated 

so as to identify non-homeomorphic topological spaces. If X and Y are two topological spaces such that X 

satisfies a separation axiom while Y does not satisfy it, then X and Y are not homeomorphic. These are 

fundamental constructs and permeates everywhere in the study of topological spaces and their applications. The 

structure and properties of some of these are explored in recent years in generalized topological spaces [1, 2, 3, 4, 

5].  

1.Preliminaries 

Definition 1.1: A space 𝑋 is said to be: 

(i) 𝛿 − 𝑇0 space, if for each pair of distinct points 𝑋, there exists a 𝛿 − open set containing one of them but 

not the other. 

(ii) 𝛿 − 𝑇1  space, if for each pair of distinct points 𝑥  and 𝑦 in 𝑋, there exists two 𝛿 − open sets 𝑈 and 𝑉 

containing 𝑥 and 𝑦 respectively, such that 𝑥 ∉ 𝑉 and 𝑦 ∉ 𝑈. 
(iii) 𝛿 − 𝑇2 space, if for each pair of distinct points 𝑥 and 𝑦 in 𝑋, there exists two disjoint 𝛿 − open sets 𝑈 and 

𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉. 

Definition 1.2: A space 𝑋 is said to be: 

(iv) 𝐵𝛿𝑔 − 𝑇0 space, if for each pair of distinct points 𝑋, there exists a 𝐵𝛿𝑔 − open set containing one of 

them but not the other. 

(v) 𝐵𝛿𝑔 − 𝑇1 space, if for each pair of distinct points 𝑥 and 𝑦 in 𝑋, there exists two 𝐵𝛿𝑔 − open sets 𝑈 and 

𝑉 containing 𝑥 and 𝑦 respectively, such that 𝑥 ∉ 𝑉 and 𝑦 ∉ 𝑈. 
(vi) 𝐵𝛿𝑔 − 𝑇2 space, if for each pair of distinct points 𝑥 and 𝑦 in 𝑋, there exists two disjoint 𝐵𝛿𝑔 − open sets 

𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉. 

Remark 1.3: From the above definitions it is clear that every 𝛿 − 𝑇𝑖  space is 𝐵𝛿𝑔 − 𝑇𝑖  space, for 𝑖 = 0,1,2, 
since every 𝛿 −open set is 𝐵𝛿𝑔 − open. 

Definition 1.4: Let 𝑋 be a space and let 𝑥 ∈ 𝑋, then a subset 𝐴 of 𝑋 is said to be 𝐵𝛿𝑔 − neighborhood (briefly, 

𝐵𝛿𝑔nbd) of 𝑥 if there exists 𝐵𝛿𝑔 − open set 𝑈 in 𝑋 such that 𝑥 ∈ 𝑈 ⊆ 𝐴. 

Definition 1.5: The union of all 𝐵𝛿𝑔 − open sets which are contained in 𝐴 is called the 𝐵𝛿𝑔 − interior of 𝐴 

and it is denoted by 𝐵𝛿𝑔int(𝐴). 

Definition 1.6: 𝐵𝛿𝑔 −  closure of a subset 𝐴  of a space 𝑋  is the intersection of all 𝐵𝛿𝑔 −  closed sets 

containing 𝐴 and it is denoted by 𝐵𝛿𝑔 − cl(𝐴) 

Theorem 1.7: Let 𝑋 be a space and 𝐴, 𝐵 ⊆ 𝑋. If 𝐴 ⊆ 𝐵, then 𝐵𝛿𝑔 − cl(𝐴) ⊆ 𝐵𝛿𝑔 − cl(𝐵) 
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Lemma 1.8: The set 𝐴 is 𝐵𝛿𝑔 −open in the space 𝑋 if and only if for each 𝑥 ∈ 𝐴, there exists a 𝐵𝛿𝑔 −open set 

𝐵 such that 𝑥 ∈ 𝐵 ⊆ 𝐴. 

Lemma 1.9: For any subset 𝐴 of  a space 𝑋, 𝐵𝛿𝑔 − cl(𝐴) = 𝐴 ∪ 𝐵𝛿𝑔 − D(𝐴), where  𝐵𝛿𝑔 − D(𝐴) stands for 

the set of all 𝐵𝛿𝑔 − limit points of 𝐴 in 𝑋. 

Theorem 1.10: Let 𝑌 be a regular closed subset of 𝑋. If 𝐴 is a 𝐵𝛿𝑔 −open subset of 𝑌, then 𝐴 is 𝐵𝛿𝑔 −open in 

𝑋. 

Theorem 1.11: Let 𝑓: 𝑋 → 𝑌 be a homeomorphism. If 𝐴 is a 𝐵𝛿𝑔 −open set in 𝑋, then 𝑓(𝐴) is a 𝐵𝛿𝑔 −open 

set in 𝑌. 

Theorem 1.12: A function 𝑓: 𝑋 → 𝑌 is 𝐵𝛿𝑔 −continuous if and only if for every open subset 𝑂 of 𝑌, 𝑓−1(𝑂) 

is 𝐵𝛿𝑔 −open in 𝑋. 

Theorem 1.13: Let 𝑓: 𝑋 → 𝑌 be continuous and open function, then  𝑓−1(𝐵) is 𝐵𝛿𝑔 −open in 𝑋 for any 𝐵 is 

𝐵𝛿𝑔 −open in 𝑌. 

2. 𝐁𝛅𝐠 − Separation Axioms 

Theorem 2.1: 

A space 𝑋 is 𝐵𝛿𝑔 − 𝑇0 space if and only if 𝐵𝛿𝑔 −closure of distinct points are distinct. 

Proof: 

Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇0 space and 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≠ 𝑦.  

Since 𝑥 ≠ 𝑦 and 𝑋 is a 𝐵𝛿𝑔 − 𝑇0 space, there exists a 𝐵𝛿𝑔 −open set 𝐺 contains one of them, say 𝑥, and not 

the other. Then 𝑋\𝐺  is 𝐵𝛿𝑔 −closed set in 𝑋  contains 𝑦  but not 𝑥, but 𝐵𝛿𝑔cl({𝑦}) ⊆ 𝑋\𝐺  and since 𝑥 ∉ 𝑋\𝐺 

implies that 𝑥 ∉ 𝐵𝛿𝑔cl({𝑦}), so 𝐵𝛿𝑔cl({𝑥}) ≠ 𝐵𝛿𝑔cl({𝑦}). 

Conversely, let 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≠ 𝑦. 

By hypothesis, 𝐵𝛿𝑔cl({𝑥}) ≠ 𝐵𝛿𝑔cl({𝑦}), then there exists at least one point 𝑝 of 𝑋 which belongs to one of 

them, say 𝐵𝛿𝑔cl({𝑥}) and does not belongs to 𝐵𝛿𝑔cl({𝑦}). 

If 𝑥 ∈ 𝐵𝛿𝑔cl({𝑥}),  then {𝑥} ⊆ 𝐵𝛿𝑔cl({𝑦}).  This implies that by Theorem 1.7, 𝐵𝛿𝑔cl({𝑥}) ⊆ 𝐵𝛿𝑔cl({𝑦}) 

which is a contradiction to the fact that 𝑝 ∉ 𝐵𝛿𝑔cl({𝑦}) but 𝑝 ∈ 𝐵𝛿𝑔cl({𝑥}), so 𝑥 ∉ 𝐵𝛿𝑔cl({𝑥}).  

Hence, 𝑥 ∈ 𝑋\𝐵𝛿𝑔cl({𝑦}) and 𝑋\𝐵𝛿𝑔cl({𝑦}) is 𝐵𝛿𝑔 −open set containing 𝑥 but not 𝑦. Thus, 𝑋 is a 𝐵𝛿𝑔 − 𝑇0 

space. 

Lemma 2.2: A subset of a space 𝑋 is 𝐵𝛿𝑔 −open set if and only if it is a 𝐵𝛿𝑔nbd of each of its points. 

Proof: 

This follows immediately from the definition of 𝐵𝛿𝑔nbd and the property of a topology that the union of a 

collection of open sets is again open. 

Theorem 2.3: 

A space 𝑋 is 𝐵𝛿𝑔 − 𝑇1 space if and only if every singleton subset of 𝑋 is 𝐵𝛿𝑔 −closed. 

Proof: 

Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇1 space and 𝑥 ∈ 𝑋. Let 𝑦 ∈ 𝑋\{𝑥} implies that 𝑦 ≠ 𝑥. 

Since 𝑋 is 𝐵𝛿𝑔 − 𝑇1 space, there exists two  𝐵𝛿𝑔 −open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈,  𝑦 ∉ 𝑈 and 𝑥 ∉ 𝑉, 𝑦 ∈
𝑉. This implies that 𝑦 ∈ 𝑉 ⊆ 𝑋\{𝑥} so that by Lemma 1.8, 𝑋\{𝑥} is a 𝐵𝛿𝑔 −open set.  

Hence, {𝑥} is 𝐵𝛿𝑔 −closed. 

Conversely, let 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≠ 𝑦,  implies that {𝑥}, {𝑦} are two 𝐵𝛿𝑔 −closed sets in 𝑋. Then 𝑋\{𝑥} and 

𝑋\{𝑦} are two 𝐵𝛿𝑔 −open sets and 𝑋\{𝑥} contains 𝑦 but not 𝑥, also 𝑋\{𝑦} contains 𝑥 but not 𝑦. Therefore, 𝑋 is 

𝐵𝛿𝑔 − 𝑇1 space. 

 

Theorem 2.4: 

For any space 𝑋, the following statements are equivalent: 
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(i) 𝑋 is a 𝐵𝛿𝑔 − 𝑇1 space 

(ii) Each subset of 𝑋 is the intersection of all 𝐵𝛿𝑔 −open sets containing it. 

(iii) The intersection of all 𝐵𝛿𝑔 −open sets containing the point 𝑥 ∈ 𝑋 is the set {𝑥}. 

Proof: 

(i) ⟹ (ii): Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇1 space and 𝐴 ⊆ 𝑋. 

Then for each 𝑦 ∉ 𝐴, there exists a set 𝑋\{𝑦} such that 𝐴 ⊆ 𝑋\{𝑦} and by Theorem 2.3, the set 𝑋\{𝑦} is 

𝐵𝛿𝑔 −open for every 𝑦. This implies that 𝐴 =∩ {𝑋\{𝑦}: 𝑦 ∈ 𝑋\𝐴}, so the intersection of all 𝐵𝛿𝑔 −open sets 

containing 𝐴 is 𝐴 itself. 

(ii) ⟹ (iii): Let 𝑥 ∈ 𝑋, then {𝑥} ⊆ 𝑋 so by (ii), the intersection of all 𝐵𝛿𝑔 −open sets containing {𝑥} is {𝑥} 

itself. Hence, the intersection of all 𝐵𝛿𝑔 −open sets containing 𝑥 is {𝑥}. 

(iii) ⟹ (i):  Let 𝑥, 𝑦 ∈ 𝑋  such that 𝑥 ≠ 𝑦  implies that by (iii), the intersection of all 𝐵𝛿𝑔 − open sets 

containing 𝑥 and 𝑦 are {𝑥} and {𝑦} respectively, then for each 𝑥 ∈ 𝑋 there exists a 𝐵𝛿𝑔 −open set 𝐺𝑥  such that 

𝑥 ∈ 𝐺𝑥 and 𝑦 ∉ 𝐺𝑥 . Similarly for 𝑦 ∈ 𝑋 there exists a such that 𝑦 ∈ 𝐺𝑦  and 𝑥 ∉ 𝐺𝑦  this implies that 𝑋 is a 𝐵𝛿𝑔 −

𝑇1 space. 

Theorem 2.5: 

A space 𝑋 is a 𝐵𝛿𝑔 − 𝑇1 space if and only if 𝐵𝛿𝑔D({𝑥}) = ∅ for each 𝑥 ∈ 𝑋. 

Proof: 

Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇1 space and 𝑥 ∈ 𝑋.  

If possible suppose that 𝐵𝛿𝑔D({𝑥}) ≠ ∅ implies that there exists 𝑦 ∈ 𝐵𝛿𝑔D({𝑥}) and 𝑦 ≠ 𝑥 and since 𝑋  is 

𝐵𝛿𝑔 − 𝑇1  space, so there exists a 𝐵𝛿𝑔 −open set 𝑈 in 𝑋  such that 𝑦 ∈ 𝑈 and 𝑥 ∉ 𝑈 implies that {𝑥} ∩ 𝑈 = ∅, 
then 𝑦 ∈ 𝐵𝛿𝑔D({𝑥}) which is a contradiction. Thus 𝐵𝛿𝑔D({𝑥}) = ∅ for each 𝑥 ∈ 𝑋. 

Conversely, let 𝐵𝛿𝑔D({𝑥}) = ∅  for each 𝑥 ∈ 𝑋.  Then by Lemma 1.9, 𝐵𝛿𝑔cl({𝑥}) = {𝑥}  which is 

𝐵𝛿𝑔 −closed set in 𝑋. This implies that each singleton set in 𝑋 is 𝐵𝛿𝑔 −closed. Thus by Theorem 2.3, 𝑋 is a 

𝐵𝛿𝑔 − 𝑇1 space. 

Lemma 2.6: 

If every finite subset of a space 𝑋 is 𝐵𝛿𝑔 −closed, then 𝑋 is 𝐵𝛿𝑔 − 𝑇1 space. 

Proof: 

Let 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≠ 𝑦. Then by hypothesis, {𝑥} and {𝑦} are 𝐵𝛿𝑔 −closed sets which implies that 𝑋\{𝑥} 

and 𝑋\{𝑦} are 𝐵𝛿𝑔 −open sets such that 𝑥 ∈ 𝑋\{𝑦} and 𝑦 ∈ 𝑋\{𝑥}. Hence 𝑋 is 𝐵𝛿𝑔 − 𝑇1 space. 

Theorem 2.7: 

If 𝑋 is 𝐵𝛿𝑔 − 𝑇0 space, then 𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑥})) ∩ 𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})) = ∅ for each pair of distinct points 

𝑥 and 𝑦 in 𝑋. 

Proof: 

Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇0 space and 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≠ 𝑦. Then there exists a 𝐵𝛿𝑔 −open set 𝐺 containing one 

of the point, say 𝑥, and not the other implies that 𝑥 ∈ 𝐺 and 𝑦 ∉ 𝐺, then 𝑦 ∈ 𝑋\𝐺 and 𝑋\𝐺 is 𝐵𝛿𝑔 −closed.  

Now 𝐵𝛿𝑔int({𝑦}) ⊆ 𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})) ⊆ 𝑋\𝐺  this implies that 𝐺 ∩ 𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})) = ∅,  then 𝐺 ⊆

𝑋\𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})).  

But 𝑥 ∈ 𝐺 ⊆ 𝑋\𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})),  then 𝐵𝛿𝑔cl({𝑥}) ⊆ 𝑋\𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})) this implies that 

𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑥})) ⊆ 𝐵𝛿𝑔cl({𝑥}) ⊆ 𝑋\𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})).  Therefore, 𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑥})) ∩

𝐵𝛿𝑔int(𝐵𝛿𝑔cl({𝑦})) = ∅. 

 

Theorem 2.8: 

If for each 𝑥 ∈ 𝑋, there exists a regular closed set 𝑈 containing 𝑥 such that 𝑈 is 𝐵𝛿𝑔 − 𝑇0 subspace of 𝑋, then 

the space 𝑋 is 𝐵𝛿𝑔 − 𝑇0. 
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Proof: 

Let 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ≠ 𝑦. Then by hypothesis, there exists regular closed sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 

and 𝑈, 𝑉 are 𝐵𝛿𝑔 − 𝑇0 subspaces. Now, if 𝑦 ∉ 𝑈 then the proof is complete. But if 𝑦 ∈ 𝑈 and since 𝑈 is 𝐵𝛿𝑔 − 𝑇0 

subspace, so there exists a 𝐵𝛿𝑔 −open set 𝑊 in 𝑈 such that 𝑦 ∈ 𝑊 and 𝑥 ∉ 𝑊 and since 𝑈 is regular closed set so 

by Theorem 1.10, 𝑊 is a 𝐵𝛿𝑔 − open set in 𝑋 containing 𝑦 but not 𝑥. Thus, 𝑋 is 𝐵𝛿𝑔 − 𝑇0. 

Theorem 2.9: 

If for each 𝑥 ∈ 𝑋, there exists a regular closed set 𝑈 containing 𝑥 such that 𝑈 is 𝐵𝛿𝑔 − 𝑇1 subspace of 𝑋, then 

the space 𝑋 is 𝐵𝛿𝑔 − 𝑇1. 

Proof: 

Let 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ≠ 𝑦. Then by hypothesis, there exists regular closed sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 

and 𝑈, 𝑉 are 𝐵𝛿𝑔 − 𝑇1 subspaces.  

Now, if 𝑦 ∉ 𝑈 , 𝑥 ∉ 𝑉 then the proof is complete.  

But if 𝑦 ∈ 𝑈 and since 𝑈 is 𝐵𝛿𝑔 − 𝑇1 subspace, so there exists a 𝐵𝛿𝑔 −open set 𝑊 in 𝑈 such that 𝑦 ∈ 𝑊𝑦 and 

𝑥 ∉ 𝑊𝑦 and since 𝑈 is regular closed set so by theorem 1.10, 𝑊𝑦 is a 𝐵𝛿𝑔 − open set in 𝑋 containing 𝑦 but not 𝑥.  

Similarly, if 𝑥 ∈ 𝑉 and since 𝑉 is 𝐵𝛿𝑔 − 𝑇1 subspace, so there exists a 𝐵𝛿𝑔 −open set 𝑊𝑥 in 𝑈 such that 𝑥 ∈
𝑊𝑥 and 𝑦 ∉ 𝑊𝑥 and since 𝑈 is regular closed set so by theorem 1.10, 𝑊 is a 𝐵𝛿𝑔 − open set in 𝑋 containing 𝑥 but 

not 𝑦.  

Thus, 𝑋 is 𝐵𝛿𝑔 − 𝑇1. 

Theorem 2.10: 

For a space 𝑋 the following statements are equivalent: 

(i) 𝑋 is a 𝐵𝛿𝑔 − 𝑇2 space 

(ii) If 𝑥 ∈ 𝑋, then for each 𝑦 ≠ 𝑥 there exists a 𝐵𝛿𝑔nbd 𝑁 of 𝑥 such that 𝑦 ∉ 𝐵𝛿𝑔cl(𝑁). 
(iii) For each 𝑥 ∈ 𝑋, ∩ {𝐵𝛿𝑔cl(𝑁): 𝑁 is a 𝐵𝛿𝑔nbd of 𝑥} = {𝑥}. 

Proof: 

(i) ⟹ (ii): Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇2 space and let 𝑥, 𝑦 ∈ 𝑋, then for each 𝑦 ≠ 𝑥 there exists two disjoint 𝐵𝛿𝑔 − 

open sets 𝑈  and 𝑉  such that 𝑥 ∈ 𝑈  and 𝑦 ∈ 𝑉. This implies that 𝑥 ∈ 𝑈 ⊆ 𝑋\𝑉, so by Definition 1.4, 𝑋\𝑉  is a 

𝐵𝛿𝑔nbd 𝑁 of 𝑥 which is 𝐵𝛿𝑔 −closed set in 𝑋 and 𝑥 ∈ 𝑋\𝑉 implies that 𝑦 ∉ 𝐵𝛿𝑔cl(𝑋\𝑉). 

(ii) ⟹ (i):  let 𝑥, 𝑦 ∈ 𝑋  such that 𝑥 ≠ 𝑦, then by hypothesis, there exists a 𝐵𝛿𝑔nbd  𝑁  of 𝑥  such that 𝑦 ∉
𝐵𝛿𝑔cl(𝑁) implies that 𝑦 ∈ 𝑋\𝐵𝛿𝑔cl(𝑁) and 𝑥 ∉ 𝑋\𝐵𝛿𝑔cl(𝑁). But 𝑋\𝐵𝛿𝑔cl(𝑁) is 𝐵𝛿𝑔 −open set also since 𝑁 

is 𝐵𝛿𝑔nbd  of 𝑥,  then there exist 𝐵𝛿𝑔 − open set 𝐺  of 𝑋  such that 𝑥 ∈ 𝐺 ⊆ 𝑁  this implies that 𝐺 ∩ (𝑋\

𝐵𝛿𝑔cl(𝑁)) = ∅. Hence 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space. 

(ii) ⟹ (iii):  Let 𝑥 ∈ 𝑋.  If ∩ {𝐵𝛿𝑔cl(𝑁): 𝑁  is 𝐵𝛿𝑔nbd  of 𝑥} ≠ {𝑥},  then there exists 𝑦 ∈∩ {𝐵𝛿𝑔cl(𝑁): 𝑁  is 

𝐵𝛿𝑔nbd  of 𝑥}  such that 𝑦 ≠ 𝑥  so by (ii), there exists a 𝐵𝛿𝑔nbd  𝑀  of 𝑥  such that 𝑦 ∉  𝐵𝛿𝑔cl(𝑀)  which is 

contradiction to the fact that 𝑦 ∈∩ {𝐵𝛿𝑔cl(𝑁): 𝑁 is 𝐵𝛿𝑔nbd of 𝑥}. Thus, ∩ {𝐵𝛿𝑔cl(𝑁): 𝑁 is a 𝐵𝛿𝑔nbd of 𝑥} =
{𝑥}. 

(iii) ⟹ (ii): Let 𝑥 ∈ 𝑋, so by hypothesis, we have ∩ {𝐵𝛿𝑔cl(𝑁): 𝑁 is a 𝐵𝛿𝑔nbd of 𝑥} = {𝑥}. 

Now if 𝑥 ∈ 𝑋 and 𝑦 ≠ 𝑥, then 𝑦 ∉∩ {𝐵𝛿𝑔cl(𝑁): 𝑁 is a 𝐵𝛿𝑔nbd of 𝑥} = {𝑥} and hence there exists a 𝐵𝛿𝑔nbd 

𝑀 of 𝑥 such that 𝑦 ∉  𝐵𝛿𝑔cl(𝑀). 

Lemma 2.11: 

Let 𝑌 be a regular closed subset of the space 𝑋, then any 𝐵𝛿𝑔nbd of the point 𝑥 in 𝑌 is a 𝐵𝛿𝑔nbd of 𝑥 in 𝑋. 

Proof: 

Let 𝑁 be any 𝐵𝛿𝑔nbd of 𝑥 ∈ 𝑋 this implies that by Definition 1.4, there exists a 𝐵𝛿𝑔 −open set 𝐺 in 𝑌 such 

that 𝑥 ∈ 𝐺 ⊆ 𝑁. Since 𝑌 is regular closed set in 𝑋, so by Theorem 1.10, 𝐺 is a 𝐵𝛿𝑔 −open set in 𝑋 which implies 

that 𝑁 is a 𝐵𝛿𝑔nbd of 𝑥 in 𝑋. 
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Lemma 2.12: 

Let 𝑌 be a regular closed subset of the space 𝑋 and 𝐴 ⊆ 𝑌, then 𝐵𝛿𝑔cl(𝐴) ⊆ 𝐵𝛿𝑔cly(𝐴). 

Proof: 

Let 𝑥 ∉ 𝐵𝛿𝑔cly(𝐴) implies that there exists a 𝐵𝛿𝑔 −open set 𝑈 in 𝑌 containing 𝑥 such that 𝑈 ∩ 𝐴 = ∅. Since 

𝑌  is regular closed set in 𝑋,  by Theorem 1.10, 𝑈  is 𝐵𝛿𝑔 − open set in 𝑋  implies that 𝑥 ∉ 𝐵𝛿𝑔cl(𝐴),  so 

𝐵𝛿𝑔cl(𝐴) ⊆ 𝐵𝛿𝑔cly(𝐴). 

Theorem 2.13: 

If for each point 𝑥 of a space 𝑋 there exists a regular closed subset 𝐴 containing 𝑥 and 𝐴 is 𝐵𝛿𝑔 − 𝑇2 subspace 

of 𝑋, then 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space. 

Proof: 

Let 𝑥 ∈ 𝑋, then by hypothesis, there exists a regular closed set 𝐴 containing 𝑥 and 𝐴 is 𝐵𝛿𝑔 − 𝑇2  subspace. 

Hence, by theorem 2.10, we have ∩ {𝐵𝛿𝑔cl𝐴(𝑁): 𝑁 is 𝐵𝛿𝑔nbd of 𝑥 in 𝐴} = {𝑥} and since 𝐴 is regular closed set 

in 𝑋, so by Lemma 2.12, 𝐵𝛿𝑔cl(𝑁) ⊆ 𝐵𝛿𝑔cl𝐴(𝑁) and by Lemma 2.11, 𝑁 is 𝐵𝛿𝑔nbd of 𝑥 in 𝑋} = {𝑥}. Therefore, 

by theorem 2.10, 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space. 

Theorem 2.14: 

A space 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space if and only if for each pair of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists a 𝐵𝛿𝑔 −clopen 

set containing one of them but not the other. 

Proof: 

Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇2 space and 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≠ 𝑦 implies that there exists two disjoint 𝐵𝛿𝑔 −open sets 

𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉. Now since 𝑈 ∩ 𝑉 = ∅ and 𝑉 is 𝐵𝛿𝑔 −open set implies that 𝑥 ∈ 𝑈 ⊆ 𝑋\𝑉 and 

𝑋\𝑉 is 𝐵𝛿𝑔 −closed set, since 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space so for each 𝑥 ∈ 𝑋\𝑉 there exists a 𝐵𝛿𝑔 −open set 𝑈𝑥  such 

that 𝑥 ∈ 𝑈𝑥 ⊆ 𝑋\𝑉, then by Lemma 1.8, 𝑋\𝑉 is 𝐵𝛿𝑔 −open set. Thus 𝑋\𝑉 is  𝐵𝛿𝑔 −clopen set. 

Conversely, let for each pair of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists a 𝐵𝛿𝑔 −clopen set containing 𝑥 but not 𝑦 

implies that 𝑋\𝑈 is also 𝐵𝛿𝑔 −open set and 𝑦 ∈ 𝑋\𝑈, since 𝑈 ∩ (𝑋\𝑈) = ∅ so 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space. 

Theorem 2.15: 

A space 𝑋  is 𝐵𝛿𝑔 − 𝑇2  space if for any pair of distinct points 𝑥, 𝑦 ∈ 𝑋,  there exists a 𝐵𝛿𝑔 − continuous 

function 𝑓 of 𝑋 into a 𝑇2 −space 𝑌 such that 𝑓(𝑥) ≠ 𝑓(𝑦). 

Proof: 

Let 𝑥 and 𝑦 be any two distinct points in 𝑋. Then by hypothesis, there exists a 𝐵𝛿𝑔 −continuous function 𝑓 of 

𝑋 into a 𝑇2 −space 𝑌 such that 𝑓(𝑥) ≠ 𝑓(𝑦). But 𝑓(𝑥), 𝑓(𝑦) ∈ 𝑌 and since 𝑌 is a 𝑇2 −space so there exists two 

disjoint open sets 𝑈𝑥  and 𝑉𝑦  such that 𝑓(𝑥) ∈ 𝑈𝑥  and 𝑓(𝑦) ∈ 𝑉𝑦  implies that 𝑥 ∈ 𝑓−1(𝑈𝑥) and 𝑦 ∈ 𝑓−1(𝑉𝑦) and 

since 𝑓  is 𝐵𝛿𝑔 − continuous function, so by Theorem 1.12, 𝑓−1(𝑈𝑥)  and 𝑓−1(𝑉𝑦)  are 𝐵𝛿𝑔 − open sets and 

𝑓−1(𝑈𝑥) ∩ 𝑓−1(𝑉𝑦) = ∅. This implies that 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space. 

Theorem 2.16: 

For a space 𝑋 the following statements are equivalent: 

(i) 𝑋 is 𝐵𝛿𝑔 − 𝑇2 space 

(ii) The intersection of all 𝐵𝛿𝑔 −clopen sets of each point in 𝑋 is singleton. 

(iii) For a finite number of distinct points 𝑥𝑖  (1 ≤ 𝑖 ≤ 𝑛), there exists a 𝐵𝛿𝑔 −open set 𝐺𝑖 such that 𝐺𝑖  (1 ≤
𝑖 ≤ 𝑛) are pairwise disjoint. 

Proof: 

(i) ⟹ (ii):  Let 𝑋 be a 𝐵𝛿𝑔 − 𝑇2 space and 𝑥 ∈ 𝑋. 

To show: ∩ {𝐺 ∶ 𝐺 is 𝐵𝛿𝑔 −clopen set and 𝑥 ∈ 𝐺} = {𝑥}. 

If  ∩ {𝐺 ∶ 𝐺  is 𝐵𝛿𝑔 −clopen set and 𝑥 ∈ 𝐺} = {𝑥, 𝑦} where 𝑥 ≠ 𝑦. Then since 𝑋 is 𝐵𝛿𝑔 − 𝑇2  space so there 

exists two disjoint 𝐵𝛿𝑔 −open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉, implies that 𝑥 ∈ 𝑈 ⊆ 𝑋\𝑉 so by Lemma 

1.8, 𝑋\𝑉 is 𝐵𝛿𝑔 −open set and also it is 𝐵𝛿𝑔 −closed set this implies that 𝑋\𝑉 is 𝐵𝛿𝑔 −clopen containing 𝑥 but 

not 𝑦 which is a contradiction. Thus the intersection of all  𝐵𝛿𝑔 −clopen sets containing 𝑥 is {𝑥}. 
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(ii) ⟹ (iii): Let {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} be a finite number of distinct points of 𝑋, then by (ii), {𝑥𝑖} =∩ {𝐹 ∶ 𝐹  is 

𝐵𝛿𝑔 −clopen set and 𝑥𝑖 ∈ 𝐹}  for 𝑖 = 1,2, … , 𝑛.  Since 𝑥𝑖 ∉ {𝑥𝑗}  for 𝑖, 𝑗 = 1,2, … , 𝑛 and 𝑖 ≠ 𝑗,  so there exists a 

𝐵𝛿𝑔 −clopen set 𝐹0 such that 𝑥𝑖 ∈ 𝐹0 and 𝑥𝑗 ∉ 𝐹0 for 𝑖 ≠ 𝑗 , (1 ≤ 𝑖, 𝑗 ≤ 𝑛) implies that 𝑥𝑗 ∈ 𝑋\𝐹0, where 𝑋\𝐹0 is 

also 𝐵𝛿𝑔 −clopen set and 𝐹0 ∩ (𝑋\𝐹0) = ∅. Therefore, 𝑋\𝐹0 is 𝐵𝛿𝑔 −open set containing 𝑥𝑗 , that is for each 𝑖 

there exist pairwise disjoint 𝐵𝛿𝑔 −open sets 𝑁𝑖 for 𝑥𝑖  (1 ≤ 𝑖 ≤ 𝑛). 

(iii) ⟹ (i): Obvious 

Theorem 2.17: 

If 𝑓 and 𝑔 are strongly 𝛿 −continuous functions on a space 𝑋 into a 𝐵𝛿𝑔 − 𝑇2 space 𝑌, then the set of all point 

𝑥 in 𝑋 such that 𝑓(𝑥) = 𝑔(𝑥) is closed set in 𝑋. 

Proof: 

Let 𝐴 = {𝑥 ∈ 𝑋: 𝑓(𝑥) = 𝑔(𝑥)}.  

It is enough to show that 𝑋\𝐴 is an open set in 𝑋. So let 𝑎 ∈ 𝑋\𝐴, then 𝑓(𝑎) ≠ 𝑔(𝑎) and 𝑓(𝑎), 𝑔(𝑎) ∈ 𝑌, but 

𝑌 is 𝐵𝛿𝑔 − 𝑇2 space, hence, there exist two disjoint 𝐵𝛿𝑔 −open sets 𝑈 and 𝑉 in 𝑌 such that 𝑓(𝑎) ∈ 𝑈 and 𝑔(𝑎) ∈
𝑉. Since 𝑓 and 𝑔 are strongly 𝛿 −continuous functions and 𝑈 and 𝑉 are 𝛿𝑔 − open sets, so by Definition 1.3, we 

obtain that 𝑓−1(𝑈) and 𝑔−1(𝑉) are open sets containing 𝑎. This implies that 𝑎 ∈ 𝑓−1(𝑈) ∩ 𝑔−1(𝑉) and 𝑓−1(𝑈) ∩
𝑔−1(𝑉) is an open set.  

Now let 𝐺 = 𝑓−1(𝑈) ∩ 𝑔−1(𝑉).  

To show that 𝐺 ⊆ 𝑋\𝐴.  If possible, suppose that there exists one point 𝑏 ∈ 𝐺  but 𝑏 ∉ 𝑋\𝐴,  then 𝑏 ∈ 𝐴. 
Therefore, 𝑓(𝑎) = 𝑓(𝑏)  and since 𝑏 ∈ 𝐸,  then 𝑏 ∈ 𝑓−1(𝑈)  and 𝑏 ∈ 𝑔−1(𝑉).  This implies that 𝑓(𝑏) ∈ 𝑈  and 

𝑔(𝑏) ∈ 𝑉,  but 𝑓(𝑏) = 𝑔(𝑏)  so 𝑈 ∩ 𝑉 ≠ ∅  which is contradiction. Thus, 𝑎 ∈ 𝐺 ⊆ 𝑋\𝐴  implies that 𝑋\𝐴  is a 

neighborhood of each of its points, so 𝑋\𝐴 is open set. Thus, 𝐴 is closed set in 𝑋. 

Corollary 2.18: 

 If 𝑓 and 𝑔 are strongly 𝛿 −continuous functions on a space 𝑋 into a 𝐵𝛿𝑔 − 𝑇2 space 𝑌 and the set of all point 

𝑥 in 𝑋 such that 𝑓(𝑥) = 𝑔(𝑥) is dense in 𝑋, then 𝑓 = 𝑔. 

Proof: 

By Theorem 2.17, the set 𝐴 = {𝑥 ∈ 𝑋: 𝑓(𝑥) = 𝑔(𝑥)} is closed in 𝑋, that is 𝐴 = cl(𝐴) and from the hypothesis 

𝐴 is dense implies that 𝐴 = cl(𝐴) = X. Therefore, 𝑓𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋. Hence, 𝑓 = 𝑔. 

References   

1. A´. Csa´sza´r, Separation axioms for generalized topologies, Acta Math. Hungar., 104 (2004),63–69. 

2. J. Makai, E. Peyghan and B. Samadi, Weak and strong structures and the T3.5 property for generalized topological 

spaces, Acta Math. Hungar., 150 (1) (2016), 1–35. 

3. W. K. Min, Remarks on separation axioms on generalized topological space, Chungcheongmathematical society, 

23 (2) (2010), 293–298. 

4. V. Pankajam and D. Sivaraj, Some separations axioms in generalized topological spaces, Bol.Soc. Parana. Mat., 31 

(1) (2013), 29–42. 

5. N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943),110–113. 

6. W. Dunham, T1/2 spaces, Kyungpook Math. J. 17(2) (1997), 161-169.           

7. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970), 89-96.  
 


