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Abstract: In this article the boundary value problem differential operator on the graph of a special structure is considered.
The graph has edges, joined at one common vertex, and vertices of degree 1. The boundary value problem is set by the
Sturm — Liouville differential expression with real-valued potentials, the Dirichlet boundary conditions, and the standard
matching conditions. This problem has a countable set of eigenvalues. We consider the so-called weight numbers, being the
residues of the diagonal elements of the Weyl matrix in the eigenvalues. These elements are monomorphic functions with
simple poles which can be only the eigenvalues. We note that the considered weight numbers generalize the weight numbers of
differential operators on a finite interval, equal to the reciprocals to the squared norms of eigenfunctions. These numbers
together with the eigenvalues play a role of spectral data for unique reconstruction of operators. We obtain asymptotic
formulas for the weight numbers using the contour integration, and in the case of the asymptotically close eigenvalues the
formulas are got for the sums. The formulas can be used for the analysis of inverse spectral problems on the graphs..
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1. Introduction

We cconsider the graph I" which consists of m edges ej, m> 2, j =1,_m, joined at a common vertex. We
let the graph I' be parameterized so that X; e[O,;r] where the parameter X; corresponds to the edgee;, the
parameter X; = 0 in the boundary vertex and X; =7 in the common vertex, | :]_,_m . We call T" a star-shaped
graph.

A function on the graph is a vector function

y(X):yj(Xj)’ j=1..,m

Where the  components Y (Xj) are  functions on the edges €.  correspondingly

y; (%) el5[0,7], j=1..,m.

We denote by Q' differentiation of the function g with respect to the first argument. Consider the differential
expression

Ly =—y7 (x)+0, (%)Y, (), j=L.,m @

Then the boundary value problem differential operator on the graph can be written as follows:
Ly =2y (x) )

% (0)=Y,(0)..=y, (0)=0 ©)

m-1
-y, (7) =D Y} (%) @)
j=2

V() =Y, (7)=..=y, (%) )

where A is the spectral parameter, the equalities (3) are Dirichlet conditions, and (4)—(5) are the standard
matching conditions. In (1) the functions ¢;(X;) are called potentials, q;(X;) € L, [0,7[], q;(x;) €l .The
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differential operator L ,given by the differential expression (1) and the conditions (3)—(5), is self-adjoin in the
corresponding Hilbert space (see [1] for details).Since the differential operators on the graphs have applications in
physics, chemistry, nano-technology, they are studied actively (see [2,3]). In the article we obtain asymptotic
formulas for weight numbers of the problem (2)—(5) which generalize the weight numbers on a finite interval
[4,Chapterl]. Those asymptotic formulas can be applied for studying of inverse spectral problems for differential
operators on graphs. Weight numbers together with eigenvalues have been used for reconstruction of the
potentials of the Sturm—Liouville operators on graphs, e.g.,in[5,6]. The difficult case is when the eigenvalues are
asymptotically close though not multiple. The asymptotic formulas are got by using the integration over the
contours, containing the asymptotically close eigenvalues, in the plain of the spectral parameter. Thus, the
asymptotic formulas are obtained for the sums of the weight numbers, as it has been done in [7] for the weight
matrices for the matrix Sturm — Liouville operator.

2.0bjectives of this research

The main purpose of this research paper is to obtain asymptotic formulas for weight numbers of the boundary
problem differential operator on a Star-shaped graph.

3.Methodology:

A descriptive research project to focus and identify the effect of differential equations on asymptotic formulas
for weight numbers of the boundary problem differential operator on a Star-shaped graph. Books, journals, and
websites have been used to advance and complete this research.

4. Elementary Basic

In this section we introduce a characteristic function of the operator L, the zeros of which coincide with the
eigenvalues. We also provide auxiliary results from [8, 9], related to the eigenvalues of L.

The conditions (4)—(5) can be written as follows:
V(y) =Hy'(z)+hy'(z) =0

where H and h are mxm matrices :

111 .11 o 0 0 -0 0
000 - 00O 1 -1 0 0 0
H=: : @ "~ @ @] h=0 1 -1 .- 0 O
000 - 00O -
000 - 00O oo o0 -1 -1

For each fixed j=1,m let S;(x,4)and C;(x,4) be the solutions of the Cauchy problems
=Si(%,A)+0q;(X)S;(x,4) =1S;(x, 1), S,(0,4)=S;(0,4)-1=0,
—C{(x,4)+d;(X)C;(x,4) =AC;(x,4), C;(0,4)-1=C;(0,2)=0.

The functions S;(x, 1), C;(x, 4) satisfy the volterra integral equations

sin/Ax +-X[sin JA(x-t)
A

S;(x,4) = N 7 g, (t)S, (t, A)dt ©)

0

sin\/Z(x—t)
Ji

Put 7 := Im A we can obtain the following asymptotic formulas from (6), (7) as \/Z —>00:

C;(x, 4) =cos/Ax+ q;(t)C, (t, A)dt ™
0
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Sj(x,/l)—SIn\/_X js'”‘/_(x Y SinJatq, ()t +
+H Smﬂx t)q() inV2(t-£)q;(£)sin 2, 5d§dt+0[ ZJ i
S’j(x,/I)=cosﬂx+IM\/z(x_t)Sinﬁtqj(t)dt+
+ﬂcosx/_(x g, ® inVA(t-&)a, ((g)s.nfgdgduo(i/%] i
Cj(x,/i)=cosﬁx+im#cosﬁtqj(t)dt+
J{Ismx/_(x g, ® inVA(t-&)a, ((;)cosfgdgdHO(;:/%J v
c;(x,i):—ﬁsinﬁx+jcosﬁ(x—t)cosﬁtqj(t)dt+

(11)

+

“sm\/_(x t)q; (1) ol
'H sin A (t - é)qj(é)cos\/ﬁgdgdHObﬁJ

We introduce matrix solutions of equation (2): S(A) =diag {Sj (X, /1)}, j=12,...,m and

C(A4) =diag {Cj (x;, /1)}, j=1,2,...,m. Every eigenvalue of problem (2)—(5) corresponds to the zero of

the following characteristic function A(A) :
A(4) :=detV(S(A)) (12)

As S;(m,A), S|(m,A) are entire functions of A4, the function A(A) is also entire. Recon-strutting the
determinant in (12), we obtain

AR =Y | Sim AT TS (7,2 W

J#k
Lemma 1. The number ﬂ.o is an eigenvalue of problem (2)—(5) of multiplicity k if and only if

ﬂn is a zero of characteristic function of multiplicity K . The statement of the Lemma 1 results from the self-

adroitness of L and is proved with the same technique as in [7, Lemma 3]. From the self- adroitness of L it also
follows that the eigenvalues of the boundary problem (2)—(5) are real.

1 T m -
Denote WJ-ZEIOqj(t)dt,f(z):Hj:l(Z—Wj). Let zP j=1,m-1 be the zeros of

W. ©
f'(2), Z(m)zzr::lﬁl. We will mean by {Kn}n:1 different sequences from |° . Considering these

designations, the following theorem can be formulated:
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Theorem 1. The operator L has a countable set of the eigenvalues. The eigenvalues can be enumerated in
such way that the further formulas are satisfied:

_ 9)
A0 —ne 2 12 m-1 nel (14)
nz
(m)
nz

The formulas (14), (15) with the remainders o(1) are obtained in [1]; theorem 1 is proved for real-valued
potentials by V. Pivovarchick [8] (see also [9]).

Remark 1. The statement of the Theorem 1 is also correct under the conditions
q;(x) €, j=1m, all {zF" are distinct.

5. Main Results

In this paper we define and study weight numbers based on the Weyl matrix.
Let @(4)= {¢jk(xj,/’t)}r,nk . be the matrix solution of (2) under the conditions
J’ =]

{¢jk(0,l)}:k:1:|, V(®)=0. The matrix M(/l):{—;é}k(o,ﬂ)}r:k:l is called the Weyl matrix and

generalize the notion of the Weyl function for differential operators on intervals (see [4]). Weyl functions and
their generalizations are natural spectral characteristics, often used for reconstruction of operators. A system of

2m columns of the matrix solutions C(1), S(A) is fundamental, and one can show, that

M(2)=(V(S(2)*V(C(2)) (16)
In view of (16) the elements of the matrix M (1) = {M Kl (xl)}kmlzl can be calculated as
1 m
=— ) 17
M, (1) NG ];[S,(X,l), Ci(xA) | |r (17)

J=k

The elements of the matrix M (A1) are monomorphic functions, and their poles may be only zeros of the
characteristic function A(A).Moreover, analogously to [7, Lemma 3], we prove the following lemma:

Lemma 2. If the number A, is a pole of M, (1), this pole is simple.

Proof. Let ﬂn be a zero of A(A) of multiplicity b. By virtue of theorem 1 there are exactly b linearly

independent eigenfunctions {Y; (X; )}t;:l .corresponding to A, Denote by K such invertible matrix that first b
columns of S(4,)K are equal to{y; (X )}k}:l.

If Y(A)=S(A)K, then S(A)=Y (LK™, and M (1) = K[V (Y (l))]_lV(C(/I)) It is sufficient to

prove that for any element of A(A) the number A, can not be a pole of order greater than 1, where

A(A) =[V (Y (D] V(CA)- 1t AGA) ={A ()}, then

det[V (Y, (A),V (Yo (2), .,V (Y, 1 (A).V (C, (D)), V (Y1 (A)), .,V (Y, ()]
detV (Y (1)) The

number

A%| (/1) =
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/10 is zero of the numerator of multiplicity not less then b —1 from that the statement of the theorem follows.

We introduce the constants a;(n = Re(_s) M, (1) which are called weight numbers. We also mean by
A=24

{K‘n (Z)}(;O:1 different sequences of continuous functions such as:

o0

Z;r‘rg‘gg( K, (2)| <o

where

R=2+max|z®

s=1,m

The main results of the paper are stated in the following two theorems.

Theorem 2. Let the eigenvalues of L be enumerated as in theorem 1, k =1,m then

2 2
> a, =N (mo1y Koy (18)
jel(n) 11V/4 n
1.
(n-7)
af, =—2-(2+ ) (19)
mz n
Where
m-1
I(n=J {min{s AL = in(”}}.
=1

Proof. To prove the theorem, consider 2,(2)=n +i,|z| < R Substituting 2 = 4, (z)into (8)-(11), we
nz

obtain
Sj(ﬂ,/if(z)) = (1" (z—c?)jn +K“—(Z)j @;,=w; —q;(2n) (20)
ni,(z) n
(2100 =144 e
C,(m A2(2) = (A1) (1+ ’f”rfz)j @)

C}(n,/if(z)):Lr?“(z)[z—cb. +K”T(Z)) @;, = w; —{;(2n) (23)

Jn

Where q;(I) = %J‘Oﬂ g;(t) cosltdt we substitute (20)-(23) into (13), (17) and get

ME@) =S| S (-, + 520 2

J#S
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My (2 (2)AG (2)) = m(zjﬂnf(z) Z H (2-ay)+ 2 @)

s;:k j¢5 j=k

Letus denote f (z)= HL(Z —(?)jn), o(r) is the circle of center 0 and radius > 0.
It can be proved that Z" =z +0o(1),n — o, where 2\, j=1,2,3,...,m—1 are the zeros of f'(z)
if zZ € O(R), then for sufficiently large n, ﬂhz(z) runs across the simple

closed contour, which surrounds /ij), i=12,3,....m—1 Integrating M, (1), after the substitution
A= A% (z) we have

2, n = 2; |

lel(n) 2e8(R)

By, (2 @)de.

The following formula is obtained from the previous one and (24), (25):

m m . (2
X ()
Z Oflj( _ 1 J' 22« (Z) s:tk _J;ts j=k dZ (26)

N :
el (n) 270, Sy M7 H(Z_Z(J))JFL(Z)
n
n

j=1

K (Z
The remainder ”( ) can be excluded from the denominator of (26) with Taylor expansion as
n

WIQH‘Z - Z(J)‘ >1 if nis large enough. Besides, A2(2) = ( K”—(Z)],|z| < R after the designation
n

m

m
> 11 (z-a,)
s=1 j=1
s#k

Oy (2) = ==
5(1)
Z—7
i)
we get
K 2n2 Kn
Y ah=o | [ Ga(@)dz+t (27)
el (n) M7Z T\ 5wy n

We note that 5(r) contains all Z, j=1,2,3,...,m—1 for r > Rand largen . Thus,

[ gu@dz= [ g,(2)dz
ze6(R) zes(r)
the numerator of the fraction @,,(Z) is a polynomial of degree M — 2 with leading coefficientm—1, and its

denominator is a polynomial of degree M—1 with leading coefficient 1. For Z € &(r) there is the equality

9. (2)= "1 0(r?), and
Z
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= [ gu()=m-1+0()

ze6(r)
As I — oo we obtain (18). Formula (19) is proved analogously.
Theorem 3. Let z® be a zero of f'(z) of multiplicity b(s)>0, 1< p<m Denote
N(s):{ls j<m:z® 2 z“)}, N’(s):{ls j<m:z® :z“)}, and W(s)={1< j<m:z? = o} if

p eW(s),then

2n?
Z (Z|E :m—ﬂ_(st‘l‘Kn) (28)

IeN'(s)

Else

2n®
Z o =m—”(93+’fn) (29)

IeN'(s)

Where

H(Z(s) _a)j) H (Z(s) _a)j)
Q =— j=1 __ 0 =b(s jeN(s) .
ps (Z(S)—a)j)z H (Z(S)_Z(J)) s ( ) H (Z(S) _Z(J))

ieN(s) jeN(s)

and the product over empty set is understood as 1.

S i .
Proof. Denote by I' such positive number that the circle ‘Z -1 )‘ <T does not contain Z(J), JeN (S) and

‘Z(S)

(27) can be proved:

+I< R, r>C>0 we call the circumference of that circle }/(3) the following analogue of the formulae

m

ki [1 (z-a)

2 =1 j=1
n k=p j=k, j= K
P _ p =k, j=p
> ah = [ == ——dz -t (30)
IeN’(n) TN s H(Z_zr(]l))
j=1
We designate
m m
> 11 @-a)
k=1 j=l,
_ k#p Jzk,j=p
FP(Z)_ m

~ - m . m .
As @] — @, =K, and the coefficients of f'(z), f(z) depend on {a)j}j:l, {cojn}j:l polynomially, we

have
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> [ e-a,)

i F(0)=k,(2)

31)
j=1
Where z € y(S) We integrate the fraction F_ (z) .

First we consider b(s) >1. Then z® is a zero of f(z) of multiplicity b(S) +1 (see [10, section 4.3]), and
cardinality of W (s) is m—b(s)—1 in the case when p €W (s) the function F (z) has no pole inside y(s),

2n?
and @ =——xK,,what is the same as (28). If p & W (S)then
msz

b(s)(z—z‘s’)b(s)_l 11 (z—a)j)+(z—z(s’)b(s) > 11 (z-o;)

( ) JeW (s) keW (s) }ivkws)
F.(2)= b(s) :

7—7® YA

(=29 T (2-27)
and
b(s) [ (2 -,)
([ (0= ﬁw((j(s)_z(j,) @)

/4

jeN(s)
Formula (29) follows from (30)—(32).

Further, let b(s) =1 When 2 is a zero of f (z), computations are the same as in the case b(S) >1 so we

(s) ..
assume f(z*)#0, and consequently p €W (s). Rewriting F(z) as

Fp(z){f(z)J(f(z)) 1 i@

o, -0, (2-0,)*f'(2)

and integrating over ¥(S), we obtain (29).

7. Conclusion

As a result of the research, this article consists three parts. The first part is introduction, the second part
contains preliminaries and in the third part, we present the proof of the second and third theorems and the
justification of the method consider retrieving two-point boundary value problems from the finite text A set of
eigenvalues of the asymptotic formula of the boundary condition coefficients and asymptotic formulas for weight
numbers of the boundary problem differential operator on a Star-shaped graph. In addition, it can be said that the
term weight numbers are considered. They are the remnants of the oblique elements of the Weyl matrix in certain
years. These elements are famous functions with simple poles that can only have certain properties. We
generalized the assumed weight numbers to the weight numbers of differential operators over a limited period of
time, equal to the reciprocal of the special squared norms. These numbers, along with special features, play the
role of spectral data for the unique reconstruction of operators. By using of contour integration, we obtain the
unbalanced duct for the weight numbers, and in the case of closely spaced free, fourls obtained for the values. At
last, formulas can be used to analyze inverse spectral in graphs.
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