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Abstract: Robotic manipulators are multi-input multi-output (MIMO), nonlinear having most of the dynamic 

parameters which are uncertain. Hence there is requirement for designing a high performance nonlinear 

controller for handling uncertainties. Today, strong mathematical tools are used in new control methodologies to 

design adaptive nonlinear robust controller with acceptable performance. One of the best nonlinear robust 

controllers which can be used in uncertainty nonlinear systems is sliding mode controller. Proposed adaptive 

fuzzy sliding mode controller based on fuzzy logic controller integrated with sliding mode framework is used to 

provide the adaptation in order to eliminate the high frequency oscillation and adjust the linear sliding surface 

slope in presence of many different disturbances and to get the best coefficients for the sliding surface. Finally, 

the proposed methodology can be applied to a three-link robot manipulator including model uncertainty and 

external disturbances as a case study. 

Key words: Sliding Mode Control; Robot manipulators; Controller; Adaptive , Fuzzy, Gray wolf optimization, 

External Disturbances 

Introduction 

In general, robotic manipulators are widely applied in the industrial environment for executing 

dangerous or routine works. Robotic manipulators(RM) have been encounter nonlinearities and various 

uncertainties in their dynamic models, such as friction, disturbance, load change due to which it is very difficult 

to reach excellent performance when the control algorithm is completely based on the robotic plant model [1]. 

The trajectory tracking accuracy is the most important function of an industrial manipulator. Thus, a robot 

motion tracking control is one of the challenging problem due to the highly coupled nonlinear and time varying 

dynamics. Robotic control system design has been an important issue in control engineering. Several kinds of 

control schemes have already been proposed in the field of robotic control over the past decades [2]. Feedback 

linearization technique can compensates some of the coupling nonlinearities in the dynamics. Although a global 

feedback linearization is theoretically possible, a practical insight is restricted. Uncertainties also arise from 

imprecise knowledge of the kinematics, dynamics and also due to joint and link flexibility, actuator dynamics, 

friction, sensor noise, and unknown loads [3]. 

These dynamical uncertainties make the controller design for manipulators a difficult task in the 

framework of classical control method. Conventional control techniques for robotic manipulators include the 

computed torque control, adaptive control, sliding mode control, and fuzzy control [4]. The adaptive control has 

a fixed structure and adaptable parameters and is very effective in coping with structured uncertainties and 

maintaining a uniformly good performance over a limited range, but it does not solve the problem of 

unstructured uncertainties. The sliding mode control is a robust nonlinear control scheme that is effective in 

overcoming the uncertainties and has a fast transient response. However, chattering problem is a major 

drawback of sliding mode control. Hence boundary layer is used to avoid chattering phenomenon [5].  

Recently the development of artificial intelligent control for robotic manipulators has received 

considerable interest. The most popular intelligent-control approaches are the neural network control and fuzzy 

control. The merit of the fuzzy control is that it can explicitly use human knowledge and experience in its 

control strategy. The drawback is the less theoretical analysis of stability for the general fuzzy controllers [6]. 

To overcome the demerits and take advantage of the attractive features of conventional control and intelligent 

control, this research proposes an adaptive fuzzy sliding mode controller (AFSMC) for the trajectory control of 

robotic manipulators. Besides advantage of stability and robustness of sliding mode control, the proposed 

method suppresses the input chattering in sliding mode by using the fuzzy control with adaptive tuning 

algorithm [7]. 

Sliding Mode Controller has been widely applied to various types of non-linear systems. SMC’s 

popularity is due to its robustness against the change in parameters and the external disturbances in both 

theoretical and practical applications. However, the action of discontinuous part in traditional SMC leads the 

whole controller to face a troublesome condition known as "chattering" and the traditional type of SMC requires 



MahsudaTadjibayevaRustamjonovna 

1145 

the whole dynamic functions of the system. Moreover, in order to achieve the non-chattering SMC, the sign 

function should be changed to saturation function to employ the adaptation of a thin boundary layer close by the 

sliding manifold to minimize or attenuate the chattering. However, this method damages the perfect tracking of 

the SMC; hence, the steady state error will always exist [8]. Furthermore, to overcome the mentioned problem, 

some adaptive strategies recommended which can compensate the disturbances in order to increase the tracking 

performance. 

In recent decades, the Fuzzy Logic as a technique based on expert knowledge has been applied to a 

wide range of controllers for solving the complex problems. Although Fuzzy controller is free from huge 

mathematical operations but sometimes more mathematical treatment is needed. However it should be noted that 

sometimes Fuzzy Logic Controller (FLC) is muchmore tranquiller [9]. Today’s, applying techniques that 

combine the fuzzy theory with nonlinear controllers, for instance using fuzzy sliding mode controller are most 

common. The applications of fuzzy logic controller can not only be used in the systems with hard modeling, but 

they can also be used for systems with high mathematical analysis. The robust model of fuzzy combination, so 

called adaptive fuzzy sliding mode was introduced to reject the chattering phenomenon and compensate 

unknown dynamic parameters in the systems by another fuzzy logic controller [10].  

 

2. LITERATURE REVIEW 

For Uncertain System, an Artificial Chattering Free on-line FSMC was developed by Sulaiman et al 

[11] in Robot Manipulator (RM). To project high performance nonlinear controller, an artificial chattering free 

AFSMC and request to uncertain RM was introduced in this study with the occurrence of hesitations. For robot 

manipulator, a typical free approximator on-line FSMC is introduced to extent an adequate performance. RM  is 

extremely non-linear and an amount of factors are ambiguous. The main target is to design a typical free 

controller by means of both systematic and experiential prototypes.  

A Strategy and Application of SMC was introduced by Zahra et al [12] for robotic manipulator. In the 

occurrence of hesitations, an examination of SMC and application to RM was introduced in this study to intend 

high performance nonlinear controller. An adaptive scheme and FLC is used to enhance the outcomes in SMC. 

Every single approach has included negative points by means of adding to the previous algorithm. A robot 

manipulator is nonlinear, and a quantity of factors are indeterminate. This investigation concentrates on relation 

among SMC which analyzed through several investigator. 

Through Torque Control scheme, a Sliding Mode Fuzzy Control was introduced by Khashayar et al 

[13] for RM. In control science, the occurrence of uncertainties and control signal sliding are two most 

noteworthy challenges for the robot manipulator. For an n link robots, a new sliding fuzzy mode control scheme 

is introduced in this study. According to the projected sliding level and approximating part of system dynamics, 

the preparation of a novel equation for system dynamics has led to the law of sliding mode fuzzy control by 

means of adaptive fuzzy procedure. Through eliminating control signal sliding and overwhelming uncertainties, 

the performance of the closed-loop structure is enhanced. Using the Lyapunov's function, the diagonal stability 

of the projected control law is long-established. 

For a two-link robot, the adaptive FSMC was developed by Lin [14]. With unknown nonlinear 

dynamics, an adaptive fuzzy SMC has been presented in this work for the robust trajectory tracing of MIMO 

control systems. Robustness is accomplished in this design. By the way of learning algorithm, the fuzzy 

controller is automatically adapted by the tuning mechanism. Through the Lyapunov stability principle, the 

global asymptotic stability of the algorithm is recognized. 

For robotic manipulators, an adaptive FSMC was developed by Guo and Woo [15]. Through Lyapunov 

technique, the constancy and the conjunction of the entire structure is verified. In the classical SMC, it is a better 

solution to the issue of chattering. Moreover, it is considered that the designated components of the controller 

have influence on the network performance. 

3. ADAPTIVE  FUZZY  SLIDING  MODE   CONTROLLER  FOR  PUMA  560  ROBOT  

A. Robotic Model 

The representation of the dynamics of a serial n-link robot is given in Eq. (1) where u indicates the 

joint displacements in 1n vector, u indicates the joint velocities in 1n vector,  indicate the torque of the 

actuators, in 1n vector, )(uM indicates the symmetric positive definite inertia matrix in nn vector, ),( uuc 

indicate the torques of centripetal and Coriolis in 1n vector and )(ug indicates the torque of the gravitation in 

1n  the vector. In addition, owing to gravity g(u) is produced as the potential energy gradient U(u) . 
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Let us consider the joints of the robot are linked together with the revolute joints. Here, du represents the 

required joint positions. Rather, du is assumed to be the double differentiable vector function. The actuator 

torque is approximated by introducing the control issu so that Eq. (2) is accomplished that promotes the suitable 

control aim. 

)()(lim tutu d
t

=
→

                                                           (2) 

The present simulation regards  “DOF PUMA-560 robot”, with the set up of six joints[16]. In addition based on 

dynamical and kinematical features of the arm are introduced. The motors of PUMA are provided with 

commercially applicable DCservo motors. Therefore, the comparison regarding the power and size of the 

PUMA motors delivers the electrical parameters of the motors. 

 

B. Proposed System Model 

Adaptive fuzzy sliding mode controller (AFSMC) is a controller that controls the uncertainties of non-linear 

systems without high-frequency switching. AFSMC helps to enhance tracking performance [17]. It is a widely 

used technique. It adjusts the SMC key parameters, in order to eliminate or minimize the chattering. AFSMC 

improves the system robustness and get rid of the parameter perturbation [18]. Overall framework of the 

proposed control  scheme is shown in figure 1 and the structure of AFSMC is represented in figure 2 [19].  

 
Figure 1. Overall framework of the proposed control scheme 

C Design of an AFSMC 

C1.1 Design of sliding surface 

The error state can be represented as [20], 

iii bac −=                                                             (3) 

Where i =1, 2, 3 … 

),(),(),( 1111 tactatc a +−=                                        (4) 

),(),(() btat ba −=                                              (5) 

The equations of error dynamic are: 

21 cc =
•

                                                            (6) 

32 cc =
•

                                                            (7) 

                  
vtccxcc −++−−=

•

)(),( 1233
                                            

(8)
 

Standardized state space equations of error states can be found as, 

21 cc =
•

                                                   (9) 
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Figure 2. Structure of AFSMC. 
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                                                           (10) 
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The sliding surface is given by, 
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=
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Where )0(4c represents initial state of 4c . Differential of the equation (13) can be written as, 


=
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The following is the matrix that defines the error states in equation (14). 
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Where 

•

−
c =  Tcccc 4321 . jc can be found by selecting the eigenvalues of M in which the characteristic 

polynomial  


=

•

+=
4

1

4)(
k

kk cecc                                                    (16) 

( )cH is Hurwitz. Speed of the system response and eigen values are relative. 

 

C 1.2 Design of adaptive SMC 

 

The control law is designed as, 

)(trrr afzeq +=                                                        (17) 

Where afzr  represents the AFSMC and eqr  represents hitting control. Sliding surface, u and derivative of 

sliding function, 

•

u serves as the input to the fuzzy controller. Overall AFSMC is chosen as, 
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),(ˆ uuFrafz

•

=                                                        (18)    

Where ),( uuF
•

 indicates the functional characteristics of fuzzy linguistic decision schemes. ̂ represents 

estimated value. The estimated error can be defined as, 

 −= ˆ~
                                                         (19) 

Estimation law is designed as, 

),(ˆ uuF
•

=                                                      (20) 

Where   represents a positive constant. The reaching law can be determined as, 

),(ˆ uuFu
••

−=                                                     (21) 

From equations (13) and (18), 
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and control input of slave system 
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C. Proposed Controlling Scheme 

  

Overall framework of the proposed control scheme is shown in fig. 1 and Structure of AFSMC is 

shown in fig. 2. The proposed simulation model is developed to tune the joint angles of the PUMA 560 robot 

arm[16[. Here, the actual feedback is generated from the real PUMA 560 system, which is connected to the 

equivalent control law generator. Further, the desired trajectory and the actual feedback are used to compute the 

error function ( E ) and the differential error function ( DE ). To the next, the sliding surface generator generates 

the activating signal based on the computed error function. Meanwhile, the sliding mode constants are adjusted 

by the proposed adaptive fuzzy system with a meta-heuristic algorithm self adaptive gray wolf optimization 

(SAGWO) algorithm[22][23][24], which can further produce the joint angle as in the fixed format with reduced 

error. 

  To the fuzzy system, two inputs such as E and DE  are applied. As per the limits of the given 

inputs, they are assigned as Zero (Z), Positive Small (PS), Positive Medium (PM), Positive Big (PB), Negative 

Small (NS), Negative Medium (NM) and Negative Big (NB). Here, the limits of Z, PS, PM, NS and NM are 

based on the triangular membership function and the limits PB and NB are based on the trapezoidal membership 

function.  

With the above-mentioned input limits, the fuzzy system generates the corresponding rules, which is 

considered as the sliding mode constants. Therefore, the generated sliding mode constants are completely based 

on the applied E and DE . Accordingly, table 1 depicts the rules or the sliding mode constants generated by the 

fuzzy system.  

Table 1. Rules OR SMC constants generated by fuzzy systems 

 

E/DE NB NM NS Z PS PM PB 

NB NB NB NB NB NM NS Z 

NM NB NB NB NM NS Z PS 

NS NB NB NM NS Z PS PM 

Z NB NM NS Z PS PM PB 

PS NM NS Z PS PM PB PB 

PM NS Z PS PM PB PB PB 

PB Z PS PM PB PB PB PB 

 

The demonstration of the fuzzy membership function is shown in figure. 3 

Meanwhile, the triangular membership function is represented in Eq. (24), where r refers to the lower limit, 

s refers to the upper limit, t indicates some value and x indicates the desired variable, where str  . Likewise, 

the representation of the trapezoidal membership function is shown in Eq. (25), where u and v indicates the 

lower and upper support limit, where svur  . The bounds of membership function for SMC is shown in 

Table II. 
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Figure.3 Demonstration of fuzzy membership function 
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Table 2. Bounds of membership function for SMC 

X r T s u V 

NM NB1 (NB2-NB1)/2 NB2 - - 

NS NM1 (NM2-NM1)/2 NM2 - - 

PS PM1 (PM2-PM1)/2 PM2 - - 

PM PB1 (PB2-PB1)/2 PB2 - - 

NB - - - NB1 NM2 

PB - - - PM2 PB1 

 

4. RESULTS AND DISCUSSIONS 

A. Experimental Procedure 

This paper  introduces a fuzzy system model that restores the system model. Mainly the proposed work 

helps to achieve the objectives. The optimization of each mechanism is used to determine the performance 

parameters of the proposed controller. This system includes a self-adaptive property into the GWO technique 

[21]. The SAGWO-FSMC[22][23] scheme helps the fuzzy model to support the SMC model in the robotic 

manipulator. It is stimulated based on MATLAB, and the output is obtained. To analyze the efficiency of the 

proposed method, it is compared with the conventional experimental technique such as SMC, FSMC, and 

GWO-SMC [20]. 

Figure 4 shows the basic Simulink model of the SAGWO-FSMC technique and the SAGWO block was 

modeled in figure 5. Simulink is a platform for designing that helps to system level design and verification. In 

this SAGWO-FSMC system, the required characteristics are acquired based on fuzzy rules. Then  obtained 

fuzzy rules represent in the form of adaptive fuzzy membership functions. During the procedure establishment, 

the number of iteration assigned for this model is 100. Then the required parameters are set based on the 

algorithm. Then its performance is compared with known methods. 

 

B. Results and Discussion 

B 1.1 Convergence analysis 

This Section discusses the results from the experiments on the proposed robotic controller. Fig. 6 

shows the convergence analysis. As mentioned earlier, the objective function or the cost function of this 

experiment is to reduce the error between the actual and the desired value. The analysis compares the 

converging performance between the conventional GWO and the proposed SAGWO based FSMC approach. 

Here, the conventional GWO-FSMC [20] initiates from the value of 8×10-3 and converged at 4.4×10-3. 

However, the proposed SAGWO-FSMC initiates from 8×10-3 and converged at 4.2×10-3, which is relatively 

lesser than the GWO-FSMC.  
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Figure 4: Simulink model of SAGWO-FSMC 
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Figure 6.Convergence analysis 

B 1.2 Computational Time Analysis:  

The computational time analysis for the implemented SAGWO-FSMC based controller is given in table 3. 

Computational time is the length of time taken to perform the computational process. It is also called ‘running 

time’. 

Table 3: Analysis on computational time 

Time SMC FSMC GWO-

FSMC 

SAGWO-

FSMC 

0 0.33947 0.32275 0.32269 0.32143 

1 0.4114 0.41088 0.41006 0.41169 

2 0.083813 0.089249 0.085669 0.091279 

3 0.32461 0.31499 0.31877 0.31384 

4 0.35503 0.34445 0.34458 0.34307 

5 0.35938 0.34471 0.34458 0.34283 

6 0.36369 0.34469 0.34427 0.34263 

7 0.36794 0.34468 0.34473 0.34245 

8 0.37214 034465 0.34473 0.34229 

9 0.37628 0.34464 0.34477 0.34216 

10 0.38037 0.34458 0.34479 0.34204 

From the table, the proposed SAGWO-FSMC method is 5.31% superior to SMC, 0.41% superior to 

FSMC, and 0.39% superior to the GWO-FSMC method at 0ms. Furthermore at 3ms, the proposed SAGWO-

FSMC method is 3.32% better than SMC, 0.37% better than FSMC, and 1.55% better than the GWO-FSMC 

method. At 10ms, the SAGWO-FSMC model is 10.08% superior to SMC, 0.74% superior to FSMC, and 0.79% 

superior to GWC-FSMC method. Therefore it is proven that the computational time has been maintaining in the 

SAGWO-FSMC method. Therefore the performance achieved by the SAGWO-FSMC model meets the demand 

for desired performance. 

B 1.2 Error Analysis: 

 The error analysis of adopted SAGWO-FSMC techniques shown in table 4. It includes the comparison 

between the proposed method and the conventional methods like SMC, FSMC, and GWO-FSMC. From the 

analysis, it is found that the proposed system performs well, compared with other techniques. The optimized 

membership functions are used for the fuzzy system.  

Table 4: Error analysis of proposed method 
 

Time (ms) SMC FSMC GWO-FSMC SAGWO-FSMC 

1 0.083907 0.08509 0.085151 0.084797 

2 0.082915 0.074572 0.074599 0.074599 

3 0.085664 0.078341 0.07845 0.78137 

4 0.015349 0.0080468 0.0043225 0.0041288 

5 0.020738 0.0080224 0.00036686 0.0005326 

6 0.02631 0.0080041 0.0001145 0.00003908 

7 0.031954 0.0079878 0.00015332 0.00046102 

8 0.037628 0.0079734 0.0002266 0.00039751 

9 0.043308 0.0079607 0.00034445 0.00043008 

10 0.048986 0.0079494 0.00042725 0.00036425 

Mean 0.047676 0.029395 0.024416 0.024389 
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Conclusion 

This paper proposes  self adaptive gray wolf optimization fuzzy sliding mode controller for  robotic 

manipulators like PUMA 560. In general, a system model was not possible to combine with the operation of 

SMC every time. Hence, fuzzy interference system was employed here to replace the system model. The 

performance of the SAGWO-FSMC was compared with the desired experimental model and the conventional 

methods like SMC, Fuzzy SMC  and GWO-SMC. Thus the experimental analysis has revealed the superior 

performance of SAGWO-FSMC, in tuning the optimum joint angles in the robotic manipulator. Finally, the 

valuable comparative analysis was done by validating the performance of proposed over conventional models 

while adding external disturbances and noise in the manipulator. Simulation results demonstrate that proposed 

model has a better performance than SMC and FSMC, because this controller can adapt itself to system 

parameter’s changes and external disturbances. The main advantage of our controller is its ability to eliminate 

the effect of fluctuations in the transient response with less effort on the control law. Also our result shows that, 

the tracking error is about 8% whereas it is less than 3 to 4 % in our case. This controller is highly efficient  and 

suppress the chattering effect. Thus, an outstanding performance of the system can achieved by using an 

adaptive fuzzy sliding mode controller.  
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