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Abstract: In this analysis, the Jeffrey fluid flow over boundary layer magnetohydrodynamic exponentially enlarged sheet 

with thermally stratified medium in existence of suction is studied. The equations of governing flow together with boundary 

conditions are renewed into a non-similar arrangement with appropriate similarity transformations and are computed with the 

aid of MATLAB solver bvp4c. The things of several constraints on velocity and temperature are studied graphically. The 

computational outcomes of skin-friction and the heat transfer rate are studied pictorially.  This article describes that the rate 

of heat transfer on the surface rises with effect of thermal stratification. The fluid velocity diminishes through growing in 

magnetic and Jeffrey parameters. 
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1. Introduction 

     Flow in the boundary layer with an enlarging surface is very significant owed to its realistic utilizations in 

engineering, polymer refining technology and electrochemistry. Productions of sheet materials are involved into 

many industrial mechanized processes and take account of together polymer and metal sheets. Viscous 

dissipation transforms the temperature profiles by singing a task resembling energy sources, which direct to 

moving the rate of heat transport. Flow in boundary-layer performance on incessant surfaces is investigated by 

Sakiadis (1961). Erickson (1966) deliberated this investigation to the case in which slanting velocity is 

transforming with non-zero surface of the special effects with heat and mass reassign is to be considered. 

Danberg and Fansler (1979), taking non-similar solution method, deliberate the stream within boundary layer 

past a wall that is prolonged with a velocity relative to the distance flanking the partition.      

        Sucking / injecting (blowing) fluid flow with a binding area can considerably alter the stream field. 

Evidently, suction leads to enlarge the friction factor coefficient, whereas injection performs in the conflicting 

way.  Wang (1989) discussed free convective on an upright extending surface. Elbashbeshy (2001) studied the 

analysis of temperature transport ended an exponentially extending incessant surface through suction. He 

acquired resemblance results of laminar boundary stratum equations recitation heat and flow in an inactive liquid 

ambitious by exponentially extending surface through suction. The procedures of blowing /suction have also 

significance in numerous technical behaviors such as intend of force manner and thermal oil recovery and radial 

diffusers is investigated by Bhattacharyya (2011). Suction is functional to chemical procedures to eliminate 

reactants by Mukhopadhyay (2012). 

       The applications of MHD fluid flows on an enlarging sheet have accomplished lot significance in 

engineering and industries nowadays. Such applications include the boundary layer fluid flow during the liquid 

film in the deliberation procedure, the fluid covering on photogenic films and aerodynamic extrusion of synthetic 

sheets. In accumulation, a broad variety of appliances on MHD boundary layer  stream can be originate in many 

fields such as electronic cooling, geothermal structures, heat insulation and metal extrusion, nuclear process, 

boilers, groundwater systems,   micro-MHD pumps, energy storage units,  high heat plasmas, thermal energy 

storage strategies and biological hauling. Nadeem et al. (2012) explored the boundary layer flow of a MHD 

Casson fluid ended an exponentially porous enlarged sheet.  

       Learning of non-Newtonian liquids is of significance due to its technical and industrial applications. 

However, the Navier Stokes equations are no longer valid to precisely depict the geographical assets of non-

Newtonian liquids. Due to dissimilarities among Newtonian liquids, numerous replicas of non-Newtonian liquids 

to be suggested. The most familiar and easiest assortment of non-Newtonian liquid is the Jeffrey fluid, which has 

a time derivative as an alternative of a convicted derivative, which is used by most liquid replicas. Newly, this 

model of liquid has prompted active discussion. Maryam Aleem et al. (2020) have studied stream of Jeffrey 

liquid through porous medium in two hot similar plates, one of them is in motion with variable velocity and 

another one is rigid and both are embedded with effect of magnetic field. Babu et al. (2018) investigated 

magnitohydrodynamic Jeffrey fluid flow through a past vertical plate in presence of porous medium, heat 

transfer and rotation. Jeffrey fluid flow in rotating channel with the presence of Couette flow is to be examined 

by Sreenadh et al. (2016). Reddappa et al. (2015) concentrate on convective Couette flow of a Jeffrey liquid in 

an inclined channel while the walls are afford with porous coating. Some of the studies can be carried in Ahmad 

and Ishak (2015), Prasad et al. (2015), Nallapu & Radhakrishnamacharya (2014) and Shehzad et al. (2013). 
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Nadeem et al. (2011) explored the encrusted boundary layer flow of a Jeffrey fluid over an exponential enlarged 

surface with radiation effects.  

      In view of the above discussions, the intend of present manuscript is to examine boundary layer 

magnetohydrodynamic stream of Jeffrey fluid over an exponentially enlarging sheet entrenched in a thermally 

stratified medium focus to suction is studied. The leading equations and corresponding frontier circumstances are 

changed into a non-similar arrangement utilizing suitable similarity transformations and are resolved by using 

MATLAB solver bvp4c. The vital parameters on velocity as well as temperature have been shown pictorially. 

 

2. Mathematical Formulation  

     A stable two-dimensional conductive, invisible viscous flow of Jeffrey fluid on a horizontal heated sheet is 

considered. The flow is restricted to positive side of y -axis. Two identical and conflicting forces are 

implemented along with x - axis, so that the wall is enlarged with origin rigid (Figure 1). A homogeneous 

magnetic force 
x

2L

0
(x)B B e  is applied in the direction of x - axis which is normal to the sheet. Here (x)

w
T is the 

temperature of the sheet and is entrenched in a thermally stratified medium of changeable ambient temperature 

 xT


 where  (x) x
w

T T


 . It is assumed that 
x

2L

0
(x)

w
T T be   and 

x

2L

0
( )T T ce


   here 0, 0b c  are 

constants and 
0

T  is the reference temperature.  

 

 
                                    

Fig1. Physical configuration. 

 

The governing flow equations are 

0
x y

u v 
 

 
                                                                                                                                                                   

(1) 
2 2

2

1
x y (1 ) y

u v u B
u v u

 

 

  
  

   
                                                                                                                               

(2) 
2

2x y y
p

T T k T
u v

c

  
 

  
                                                                                                                                                

(3) 

The subsequent boundary conditions 

At y  0 :   , , T T
w

u U v V                                                                                                                                

(4) 

As y  :   0, T T ( )u x


                                                                                                                                       

(5) 

where u & v - Velocity components in x  & y directions, T - Fluid temperature, k - Thermal conductivity of 

fluid, 
p

c - Specific heat at stable pressure,  - Electrical conductivity of the fluid, 





  - Kinematic viscosity,               

 - Dynamic viscosity,  - Fluid density, 
0

B  - Strength of  magnetic field functional in the y  -direction, the 

persuaded magnetic field being neglected. 
0

x

LU U e  - Enlarging velocity, 
0

U  - Reference velocity, 0V   - 
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Velocity of blowing, 0V   - Velocity of suction, 
x

2L

0
V V e - Special kind of velocity at the wall is measured, 

0
V  

- Primary potency of suction. 

 

3. Method of solution 

     

    We introduce the similarity variables as 

         
x x x

0 2L L 2L

0

0

y, e , e ,
2 2

w

U T T
e u U f v f f

L L T T


      





      


                                                  

(6) 

The accomplishment of above variables leads to the following expressions 

     2

1 1 1
1 2 1 1 0f ff f Mf                                                                                                                      

(7) 

 Pr Pr 0f f St f                                                                                                                                            

(8) 

with the boundary conditions  

(0) , (0) 1, (0) 1f S f St                                                                                                                                  

(9) 

( ) 0, ( ) 0f                                                                                                                                                         

(10) 

Where 
1
 - Jeffrey factor, 

2

0

0

2 B L
M

U




  - Magnetic factor,   - Electrical conductivity of the fluid,                 

St c b  - stratification factor,  - Non-dimensional temperature, Pr
p

c

k


  - Prandtl number and 

0

0

2
0(or 0)

L
S V

U
    - suction (or blowing) factor. Here St is greater than zero states that a steadily 

stratified situation and 0St   states that an unstratified situation. 

 

Physical quantity like friction factor coefficient
f

C  and Nusselt number Nu  represented as follows 

 0
f

C f                                                                                                                                                                  

(11) 

 0Nu                                                                                                                                                                    

(12) 

 

4. Results and discussion 

    The resulting nonlinear ordinary differential expressions (7) and (8) are solved numerically with 

corresponding boundary conditions through the help of bvp4c with MATLAB package. This section provides the 

effect of various physiological parameters on velocity, temperature, friction factor coefficient and heat transfer 

rate, for fixed values of 1,M 
1

0.3,  0.5,S  0.5,St   0.7Pr   through Figs. 2 -19.  

    We observe from Figs. 2, 3 and 4 that the velocity diminishes with the enlarge in
1
 , M and S . From Figs. 5 

and 6 we observe that the temperature enhances with the raise in the M and 
1
 . From Figs. 7, 8 and 9 we 

examine that the temperature diminishes with the raise in S , St and Pr . From Figs. 10, 11 and 12, we notice that 

the shear stress increases with enhance in 
1
 , M and S . Evidently, when considering wall suction ( 0S  ), this 

cause a shrink in thickness of the boundary layer. 0S  represents the case of non-porous extended sheet.  Figs. 

13, 14, 15 and 16 are correspondingly the pictorial illustrations of temperature gradient silhouettes    for 

diverse values of 
1
  and M  for the porous ( 0S  ) and nonporous ( 0S  ) sheet. This is originate that the 

temperature gradient diminishes with an enhance in the parameters 
1
 and M . Figs. 17 and 18 are plotted to learn 

the outcome of the Stratification parameter St  we see from this figures the temperature gradient enhances with 

rising St  for both porous ( 0S  ) and nonporous ( 0S  ) sheet. The temperature gradient enhances with rise in 

the suction parameter S , such characteristic is shown in Fig. 19.  

    Tables 1 and 2 presented the outcome of various emerging thermo physical factors for friction factor 

coefficient and Nusselt number. In Table 1, it can be renowned that the coefficient of skin friction enhances on 

augmenting M , 
1
  and S . Table 2 presents the coefficient of Nusselt number for different values of M , St , 

1
 , 

S  and Pr . It is observed that the Nusselt number reduces on augmenting M and 
1
  whereas the conflicting 
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behavior is noticed for growing values of St , S  and Pr . Table 3 depicts the comparison of (0)   for 

1 0K E S St M       with Bidin & Nazar (2009) and Swati Mukhopadhyay (2013) for some values of Pr . 

It is noticed that Nusselt number rises on augmenting Pr . An enhancing in Pr , diminishes the thermal boundary 

layer thickness. Fluids with inferior Pr  will acquire superior thermal conductivities, in order that heat can 

disseminate from the sheet quicker than for superior Pr . 
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Fig. 2. Difference of magnetic field M on  f  . 
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Fig. 3. Difference of Jeffrey parameter 
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 on  f  . 
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Fig. 4. Difference of Suction parameter S on  f  . 
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Fig. 5. Difference of magnetic field M on    . 
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Fig. 6. Difference of Jeffrey parameter 
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 on    . 
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Fig. 7. Difference of Suction parameter S on    . 
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Fig. 8. Difference of Stratification parameter St on 
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Fig. 9. Difference of Prandtl number Pr on    . 



Turkish Journal of Computer and Mathematics Education  Vol.12 No.13 (2021), 730-739 

 

735 

 

 
 

Research Article  

 

0 2 4 6 8 10
-2.5

-2

-1.5

-1

-0.5

0



f"
( 

)

 

 


1
 = 0.2


1
=0.4  

 
1
 = 0.6 

4.6 4.8 5 5.2 5.4
-6

-4

-2

0
x 10

-4

 

 

 

Fig. 10.  f  with   for distinct values of 
1
 . 
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Fig. 11.  f  with   for distinct values of M . 
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Fig. 12.  f  with   for distinct values of S . 
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Fig. 13.    with   for distinct values of 
1
 in the                  

              absence of S . 
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Fig. 14.    with    for distinct values of 

1
 in     

              the presence of S . 
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Fig. 15.    with   for distinct values of M  in the  

              absence of S . 
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Fig. 16.    with   for distinct values of M  in the     

              presence of S . 

0 2 4 6 8 10
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0




'(


)

 

 

 St = 0.2

 St = 0.4

 St = 0.6

 
Fig. 17.    with   for distinct values of St  in the  

              absence of S . 
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Fig. 18.    with   for distinct values of St  in the  

              presence of S .          
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Fig. 19.    with   for distinct values of S .               

 

 

 

 

 

Table 1: A numerical analogy for friction factor coefficient (0)f   at the sheet 0  for diverse values of   

              1, & S M . 

 

M  
1
  S   0f   

1.0 0.3 0.5 2.198442 

2.0 0.3 0.5 2.520513 

3.0 0.3 0.5 2.800320 

1.0 0.2 0.5 2.098458 

1.0 0.4 0.5 2.295839 

1.0 0.6 0.5 2.483935 

1.0 0.3 0.5 2.198442 

1.0 0.3 1.0 2.596169 

1.0 0.3 1.5 3.045347 

 

Table 2:  A numerical analogy for Nusselt number (0)   at the sheet 0  for various values of  

               1Pr, , , &S St M . 

 

M  
1  S  St  Pr   0  

1.0 0.3 0.5 0.5 0.7 0.596085 

2.0 0.3 0.5 0.5 0.7 0.564501 

3.0 0.3 0.5 0.5 0.7 0.541406 

1.0 0.2 0.5 0.5 0.7 0.606136 

1.0 0.4 0.5 0.5 0.7 0.586773 

1.0 0.6 0.5 0.5 0.7 0.570026 

1.0 0.3 0.5 0.5 0.7 0.596085 

1.0 0.3 1.0 0.5 0.7 0.694789 

1.0 0.3 1.5 0.5 0.7 0.810096 

1.0 0.3 0.5 0.1 0.7 0.119217 
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1.0 0.3 0.5 0.2 0.7 0.238433 

1.0 0.3 0.5 0.3 0.7 0.357650 

1.0 0.3 0.5 0.5 0.2 0.195929 

1.0 0.3 0.5 0.5 0.4 0.349138 

1.0 0.3 0.5 0.5 0.6 0.497642 

 

Table 3: A numerical analogy for (0)  contrary those of Bidin & Nazar (2009) and Swati Mukhopadhyay  

(2013)  

              for diverse values of Pr . 

 

Pr  
Bidin & Nazar (2009)  

with 0K E   

Swati Mukhopadhyay (2013)  

with 0S St M    

Present results with 

1
0S St M      

1.0 0.9547 0.9547 0.9547 

2.0 1.4714 1.4714 1.4714 

3.0 1.8961 1.8961 1.8961 

 

5. Conclusion 

    In current investigation to furnish the numerical results of the boundary layer flow of conducting Jeffrey liquid 

through an exponentially enlarge sheet entrenched in a stratified thermal medium in occurrence of suction. The 

outcomes of parameters ,S M and
1
 on invisible liquid repress the momentum of the fluid which in turn causes 

the enrichment of the coefficient of skin-friction. The rate of heat transport is sinking with rising Jeffrey 

parameter and magnetic parameter. The temperature diminishes with growing stratification parameter and 

Prandtl number. 
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