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Abstract:A Statistical Models used for quantifying the viral load in the blood plasma of HIV Patients. These 

Models are mostly non-linear differential equations. Determination of solution of variable in the Differential 

equation is very complicated. The quantification of viral load by using differential equation is not as easy 

approach. The hierarchical Bayesian approach is used to find the predictive distribution of viral load, which is 

other way of finding the solution. If the prior distribution is only conjugate the expression Predictive 

Distribution is simple. The study of viral replication not at all considering as a single period, it is based on the 

number of succeeding periods. So, the researcher developed a New Auto Regressive moving average Growth 

process with (p, q) order for the viral replication and finds its predictive distribution.     

Keywords: ARMA, HIV, Statistical Models, Auto Regressive moving average Growth process 

1. Introduction  

          The chronically infected individuals are heterogeneous in the viral infection population. The viral 

replication is varing person to person. In that situation, treatment becomes the dominant strain. So, the viral 

replications models are characterising effective deterministic differential equation. But not at all generally a 

simple solution. So, the some of researcher followed the stochastic model for viral dynamic involving 

susceptible cell and infected 𝐶𝐷4
+𝑇 cell. These models are not satisfied to analyses the treatment effect. This 

research is concentrating the individual viral load for succeeding periods are modelled as a new ARMA G (p, q) 

and its predictive distribution is newly derived by Bayesian methodology.    

In this paper introduce new HIV replication process and its assumption is different form postulate of the 

Brownian motion process. This process related to the ARMA (p, q) process. The model is determined the number 

of replication by newly derived the generating function based on concept of branching process. The following is 

the some of review of literature relating this study. 

2. Review of Literature 

Ollivier Hyrien (2005) has explained the progenitor cells give rise to different clones (or clusters) of 

cells that evolve in parallel so that microscopic examination of their composition at distinct time points provides 

various count.  Andrei Y. Yakovlev (2008) has proposed two new models of an age dependent branching 

process with two types of cells to describe the kinetics of progenitor cell populations cultured in vitro. Their 

main focus is on the estimation of the offspring distribution from data on individual cell evolutions. Christine 

Jacob (2010) have presented a general class of branching processes in discrete time for modelling in a 

stochastic way some diseases propagation when the infected period is long respect to the time frequency of 

births. However when the transitions are population dependent, the long-term prediction of these processes is an 

open problem in the general case. Yuan Yuan(2011) has used the new stochastic models which  of stochastic 

differential equations (SDEs) and continuous-time Markov chain (CTMC) models that, explain the account for 

the variability in cellular reproduction and death, the infection process, the immune system activation, and viral 

reproduction. Two viral release strategies are considered: budding and bursting. The CTMC model is used to 

estimate the probability of virus extinction during the early stages of infection. Fernando Antoneli (2011) has 

referred the initial viral population starts replication constrained by the unavoidable interaction with the host 

organism and evolves in time towards an eventual equilibrium. Jessica M. Conway (2018) has investigated the 

initial stages of HIV infection within a host and they have developed a multi-type, continuous-time branching 

process model. This model is a stochastic extension of the standard viral dynamics model, under the assumption 

that the number of cell targets for viral infection is constant, biologically reasonable since, during the earliest 

stages of HIV infection, very few cells are infected relative to their total population size. Abid Ali Lashari 

(2018) has developed to present a branching process approach for analysing the early stages of an outbreak of a 

sexually transmitted infection, or any other infectious disease, spreading along the dynamic network. Aadrita 

Nandi and Linda J. S. Allen (2019) have explained the Multitype branching processes approximate the 
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dynamics of the CTMC model near the disease-free equilibrium and it is used to estimate the probability of a 

minor or a major epidemic. Lubna Pinky (2019) have proposed the computing time of the direct method scales 

linearly with the initial number of target population the direct method becomes infeasible to simulate viral 

infection models with realistic number of target cells, i.e. of order 1 × 10
8
. Antonio A. Alonso (2020) has used 

stochastic models for the estimation of parameters to successfully fit experimental data in particularly 

challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of 

times to division, the parameter estimation problem can become numerically intractable.  They overcame this 

limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) 

instead, which relates to the distribution of division times. Katrin Haeussler (2018) has developed to present a 

dynamic MM under a Bayesian framework. They extended a static MM by incorporating the force of infection 

into the state allocation algorithm. The corresponding output is based on dynamic changes in prevalence and 

thus accounts for herd immunity. Verrah Otiende , Thomas Achia (2019) have identified elevated risk areas 

for TB/HIV co infection and fluctuating temporal trends which could be a result of improved TB case detection 

or surveillance bias caused by spatial heterogeneity in the co -infection dynamics. The elevated risk areas 

indicated the need for focused interventions and continuous TB-HIV surveillance. The following is designed the 

model for stochastic variation of viral load. 

A New model for stochastic variation of viral load  

Let  𝑋 𝑡 , 𝑡𝜖𝑇  be a HIV replication process at continuous time interval with satisfying the following 

assumptions. 

(i)  𝑃 𝑋 𝑡 = 1 = 0, if 𝑡 = 1. 
(ii)  𝑋 𝑡 , 𝑡𝜖𝑇  has dependent increments.,       𝑡 = 1,2, … 𝑛𝜖𝑇 

(iii)  𝑋 𝑡 , 𝑡𝜖𝑇   has not stationary increments. 

(iv) 𝑃 𝑋 𝑡 − 𝑋(𝑠) ≤ 𝑢 =  𝑒−𝛽𝑢 𝑢𝛼−1𝑑𝑢
∞

0
 ,0 < 𝑢 < ∞ 

Where 𝑢 = 𝑋 𝑡 − 𝑋(𝑠) (number of replication between the time t and s), T is time.𝑇 ∈ 𝑅.   

Viral replication depends on sensing and responding to diverse environment factors, often involving the 

activation and expression of multiple genes. The viral transformation process from virus to the 𝐶𝐷4
+ 𝑇 cell by 

the nucleus reactor of the human body. But replication of viral particles RNA reactor with DNA of 𝐶𝐷4
+ 𝑇 cell is 

connected with the branching process. 

Let 𝑡1is assumed that the initial time of infection of 𝐶𝐷4
+ 𝑇 cell. At the time 𝑡𝑖 , the initial infection of  

𝐶𝐷4
+ 𝑇 cell by single the HIV is denoted by 𝑋0 = 1, then it replication from the 𝐶𝐷4

+ 𝑇 cell is denoted by 

𝑋1 = 𝜀1, with probability 𝑃 𝑋1 = 𝜀1 = 𝑝1 , is called as first stage viral replication  then at time 𝑡2 the second  

duration of period , the second stage viral replication is denoted by 𝑋2,with probability 𝑃 𝑋2 = 𝜀2 = 𝑝2 so on. 

At time 𝑡𝑛+1  𝑛 + 1 𝑡ℎ  stage viral replication only depends on  𝑛 𝑡ℎ  stage replication. But 𝑛𝑡ℎ  stage 

replication depends on the previous  𝑛 − 1 𝑡ℎ    stage replication. 

Let  𝑋1 , 𝑋2, … , 𝑋𝑛  is denoted by viral replication process and its generating function of the viral 

replication is represented by  

𝐸 𝑒−𝑠𝑖𝑋𝑖 =  𝑒−𝑠𝑖𝑋𝑖

n

𝑖=1

𝑃 𝑋 = 𝑥𝑖  

Where 1 < 𝑠𝑖 < 𝑠0𝜖𝑅 and at each stage viral replication is increasing nature. So it is assumed to be the 

exponential distribution. Therefore the generating function becomes, 

𝑍 𝑠𝑖 =   ⋯  𝑒−𝑠𝑖𝑥𝑖𝜃𝑒−𝜃𝑥𝑖𝑑𝑥1 … 𝑑𝑥𝑛

𝑠0

𝑠𝑛

𝑠2

𝑠1

𝑠1

1

 

Where the 1 𝜃  is the average viral replication over the n period. 

The average viral replication of n stages for n 𝐶𝐷4
+𝑇 cells is given by   
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𝜆11

𝜆𝑖1

⋮
𝜆𝑛1

𝜆12 ⋯ 𝜆1N

𝜆𝑖2

⋮
𝜆𝑛2

⋯
⋱
⋯

𝜆𝑖𝑗

⋮
𝜆𝑛𝑁

             𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑁. 

 

Since average replication of each stage is considered as increasing nature such that,         𝜆𝑖1 < 𝜆𝑖2 <
⋯ < 𝜆𝑖𝑛  and their “n” stage transition probabilities is given by 

           𝑃1 < 𝑃2 < 𝑃3 < ⋯ < 𝑃𝑛                                  𝑖. 𝑒. ,   𝑝𝑖 = 1,𝑛
𝑖=1                  

The probability generating function of the 𝑖 stage is denoted by𝑍𝑖 = 𝑒−𝑠𝑗 𝑠𝑗
𝑥𝑖 , where 0 < 𝑠𝑗 < 1, and 𝑋𝑖  

is the 𝑖𝑡ℎ  stage viral replication as 𝑋𝑖  the n
th

 stage. The probability generation function of viral replication is 

denoted by 𝑍𝑛 = 𝑍𝑛−1 𝑍𝑛−2 … 𝑍1 if 𝑍𝑖 > 𝑍𝑖−1,  𝑛 + 1 𝑡ℎ  stage probabilities generation function of viral 

replication is given by. 

𝑍𝑛+1 =  𝑍𝑖 ,

𝑛

𝑖=1

 𝑖 = 1,2, … , 𝑛 

                                                            =  𝑒−𝑠𝑗 𝑠𝑗
𝑥𝑖𝑛

𝑖=1 , 0 < 𝑠𝑗 < 1 

and the first stages 𝑗 = 1,2, … , 𝑚 and initial replication as assume that 𝑍0 = 1.  At each stage j can be randomly 

choose n and it is fixed for each stage. if j=1 at first stage 

𝑠𝑗 = 𝑠1 = 0.1𝑎𝑛𝑑 𝑖𝑓 𝑗 = 2, 𝑠𝑗 = 𝑠2 = 0.2 𝑎𝑛𝑑 𝑠𝑗  𝑖𝑠 0 < 𝑠𝑗 < 1. Therefore 𝑍𝑛+1is the 𝑛 + 1𝑡ℎ  stage probability 

generating function of the viral replication process by under taking the concept of branching process. 𝑋𝑛+1 is the 

viral replication at the  𝑛 + 1 𝑡ℎ  stage.  

Let the viral replication at the 𝑖𝑡ℎ  stage is considered as Auto Regressive Model of            𝑋𝑖 = 𝛼0 + 𝛼𝑋𝑖−1 + 𝜀𝑖 . 
where 𝜀𝑖  is distribution normal with mean zero and variance𝜎2, and  

𝜀𝑖 = 𝛽0𝜀𝑖−1 + 𝑒0 

𝜀1 = 𝛽1𝜀0 + 𝑒0 

𝜀2 = 𝛽2𝜀1 + 𝑒1 

⋮ 

𝜀𝑛 = 𝛽𝑛𝜀𝑛−1 + 𝑒𝑛  

Where  𝜀0 < 𝜀1 < ⋯ < 𝜀𝑛  and 𝑒0 < 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑛 . 

Where 𝜀𝑖’s are extraneous factor of biological reaction during process of  the viral replication depends on 

the previous stage replication process and number of infected 𝐶𝐷4
+𝑇 cells so on so this processes is increasing 

nature in the current stage compare to the previous stage.  

𝛼0 − is the constant replication per each stage. 

𝑋𝑖−1 − is the viral load at the previous stage. 

𝜀𝑖 −is DNA capacity due to the biological reaction. 

𝛼𝑖 −is the proportion of viral replication in the current stage. 

Then  𝑛 + 1 𝑡ℎ  stage viral load is given by, 
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𝑋𝑛+1 = 𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 + ⋯ + 𝛼𝑝𝑋𝛽 + 𝛽0 + 𝛽1𝜀0 + 𝛽2𝜀1 + 𝛽3𝜀2 + ⋯ + 𝛽𝑞𝜀𝑞−1 + 𝑒𝑝𝑞 . 𝑒𝑝𝑞 = 𝑒0 + 𝑒1 +

⋯ + 𝑒𝑛 , 𝑒𝑝𝑞 ~𝑁 0, 𝜎2  

Where  ep = 𝛽0 + 𝛽1𝜀0 + 𝛽2𝜀1 + 𝛽3𝜀2 + ⋯ + 𝛽𝑞𝜀𝑞−1 + 𝑒𝑝𝑞 . 

 𝜀𝑖~𝑒𝑥𝑝 𝜎𝑖  and 𝑒𝑖~ 𝑒𝑥𝑝 𝛿𝑖  

From the above assumption the  𝑛 + 1 𝑡ℎ  stage viral replication process of growth order (p, q) is given 

by𝑋𝑛+1. It is a new auto regressive moving average processes of order (p. q), it is denoted by ARMA G (p, q). 

Let us assume that the initial check up one virus particle infect the one 𝐶𝐷4
+ 𝑇 cell as denoted as 𝑋0 = 1 

and 𝑖 = 1, 𝛼0 = 1and every six month duration viral check up is considered as a stage. It is a random variable 

denoted by 𝑋𝑖    

(i) Initial infection is assumed that one 𝐶𝐷4
+𝑇 cell is infected. 

(ii)       In the first generation one 𝐶𝐷4
+𝑇 broken out, number of virus with range [c, d]   

           Where 𝛼1 is the co-efficient of generation, 

                      Therefore,  𝑋1 = 𝛼1 𝑎𝑋0 , 

𝑋1 = 𝑓 𝑋0 = 𝛼1 𝑎𝑥0 ,  

Where 𝑎𝜖 𝑐, 𝑑 𝜖 10,100 ;  and αi = 1,2, … , nϵR > 0 

⇒ 𝑋1 =  𝛼1𝑎𝑥0𝑑𝑎

100

10

                                                               

                            = 𝛼1
 𝑎2 

2
 
100
10

= 5000 − 50 = 4500.                             

(iii) Second generating 𝑋2 = 𝑓 𝑋1  

= 𝛼2𝑓 𝑋0      

= 𝛼2𝛼1   𝑎𝑋0 𝑑𝑎

100

10

 

⋮ 
𝑋𝑛+1 = 𝑓 𝑋𝑛                                   

= 𝛼𝑛𝛼𝑛−1 … 𝛼1 𝑎𝑋0  

          =  𝛼𝑛𝛼𝑛−1

𝑑

𝑐

… 𝛼1 𝑎𝑋0 𝑑𝑎 

Normally, the viral infection extraneous factor involvement variation is increasing nature. So, the 

Biological error is considered as exponential growth. But infected patient’s viral growth is usually distributed as 

normal. Then the largest replication is denoted by 𝑦𝑛  and its prediction density for future replication of a 

particular patient is given by 

Let 𝑓 𝑦𝑛  is the density of the largest viral replication in the current period (stage). 

𝑦𝑛~𝑁 0, 𝜎𝑛
2  

𝑓 𝑦𝑛 =
1

 2𝜋𝜎𝑛
2
𝑒

−1
2  

𝑦𝑛
2

𝜎𝑛
2 

             

𝑓 𝑦𝑛 =  
1

 2𝜋𝜎𝑛

𝑒
−1

2𝜎𝑛
2 𝑦𝑛  

𝑑𝑦𝑛

𝑦𝑛

−∞
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Current stage, largest viral load density is denoted by 

𝑓𝛼 𝑦𝑛 = 𝑛 𝐹 𝑦𝑛  𝑛−1𝑓 𝑦𝑛            

                                                = 𝑛   𝑐. 𝑒
−

1

2𝜎𝑛
2 𝑦𝑛  2

𝑑𝑦𝑛

𝑦𝑛

−∞

 

𝑛−1

1

 2𝜋𝜎𝑛

𝑒
−1

2 𝑦𝑛
2
 

The prior density of 𝜎𝑛
2 is also exponential growth of viral load, its density follows the gamma random 

variable with parameter  𝛼, 𝛽 > 0, and it is denoted by 

𝑓 𝜎𝑛
2 =

𝛽𝛼

Γ𝛼
𝑒−𝛽𝜎𝑛

2
 𝜎𝑛

2 𝛼−1𝑑𝜎𝑛
2 

The posterior density function of the viral load variation in the current stage is denoted by 

                                               𝑃 𝜎𝑛
2 𝑦𝑛  = 𝑓 𝑦𝑛 ∙ 𝑃 𝜎𝑛

2                                                    … (1) 

                  = 𝑛   𝑐

𝑦𝑛

−∞

𝑒
−𝑦𝑛

2

2𝜎𝑛
2
𝑑𝑦𝑛 

𝑛−1`

1

𝑐
𝑒

−𝑦𝑛
2

2𝜎𝑛
2 𝛽𝛼

Γ𝛼
𝑒−𝛽𝜎𝑛

2
 𝜎𝑛

2 𝛼−1 . 

=
𝑛

𝑐

𝛽𝛼

Γ𝛼
𝑒−𝑦𝑛

2
𝑒

− 1
2𝜎𝑛

2 +𝛽𝜎𝑛
2 

 𝜎𝑛
2 𝛼−1 𝐹 𝑛−1 

Let  

𝐹 =  
1

𝑐

𝑦𝑛

−∞

𝑒
−1

2𝜎𝑛
2𝑦𝑛

2

𝑑𝑦𝑛 −  2𝛽 − 1 𝜎𝑛
−1            

=  𝑓 𝑦𝑛 𝑑𝑦𝑛 +  𝑓 𝑦𝑛 𝑑𝑦𝑛 .

𝑦𝑛

0

𝑦𝑛

−∞

              

= 0.5 +
1

𝑐
 𝑒

−1

2𝜎𝑛
2𝑦𝑛

2

𝑑𝑦𝑛 .

𝑦𝑛

−∞

                        

Where  
1

2𝜎𝑛
2 = 𝑎 

=
1

𝑐
 𝑒

−𝑦𝑛
2

𝑎 𝑑𝑦𝑛

𝑦𝑛

0

                                         

Where  
𝑦𝑛

2

𝑎
= 𝑦 ⇒ 𝑦𝑛

2 =
𝑦

𝑎  , 𝑦𝑛 =  𝑦
𝑎                                                                                                                                               

2𝑦𝑛𝑑𝑦𝑛 = 𝑑𝑦𝑎 

 𝑑𝑦𝑛 =
𝑑𝑦

2 𝑦
𝑎 

 

=
1

𝑐
 𝑒−

𝑦
𝑎 𝑑𝑦

2 𝑦
𝑎 

 𝑦
𝑎 

0

𝑛                   
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= 2𝑐  𝑒−
𝑦

𝑎  
𝑦

𝑎  
1

2 
𝑑𝑦

 𝑦
𝑎 

0

             

Since  𝑒−
𝑦

𝑎  
𝑦

𝑎  
1

2 −1
𝑑𝑦

∞

0
=

Γ1
2 

 1
𝑎  

1
2 

=
Γ1

2 ×2𝑐

 1
𝑎 

 

=
Γ 1

2 × 2 2𝜋𝜎𝑛

 1
𝜎𝑛

 

 

= 2𝜋 𝜎𝑛 
3

2          

=  2
𝜎𝑛

                

 𝑓 𝑥 𝑑𝑥 <  𝑓(𝑥)

∞

0

𝑑𝑥 < 2𝜋𝜎𝑛

3
2 

𝑦𝑛
𝜎𝑛 

0

 

 𝑓(𝑦𝑛)𝑑𝑦𝑛 = 2𝜋 𝜎𝑛 
3

2  𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑦𝑛

−∞

 

Since, human viral replication nonnegative therefore the density of highest replication is truncated as  

 𝑓(𝑦𝑛 )𝑑𝑦𝑛 <  2
𝜎𝑛

 

𝑦𝑛

0

              

Therefore the posterior density (1) become 

𝑃 𝜎𝑛
2 𝑦𝑛  =

𝑛

 2𝜋𝜎𝑛

𝛽𝛼

Γ𝛼
𝑒−𝑦𝑛

2
𝑒

− 
1

2𝜎𝑛
2+𝛽𝜎𝑛

2  𝜎𝑛
2 

𝛼−1
 2𝜋𝜎𝑛

3
2 
 
  

                         = 𝑛 2𝜋
𝛽𝛼

Γ𝛼
𝑒−𝑦𝑛

2
𝑒

− 1
2𝜎𝑛

2 +𝛽𝜎𝑛
2 

 𝜎𝑛
2 𝛼−1

2 
1 + 𝛽

2𝜎𝑛
2

   

Integrated out the 𝜎𝑛
2 of the posterior density 

 𝑃 𝜎𝑛
2 𝑦𝑛  𝑑𝜎𝑛

2

∞

0

                                             

=  𝑒−𝑦𝑛
2
𝑒

− 1
2𝜎𝑛

2 +𝛽𝜎𝑛
2  𝜎𝑛

2 
𝛼−1

2 

𝑑𝜎𝑛
2

∞

0

 

=  c𝑒−𝑦𝑛
2
𝑒

− 1

2𝜎𝑛
2+𝛽𝜎𝑛

2   𝜎𝑛
2 

𝛼−1
2 

𝑑𝜎𝑛
2

∞

0

 

=  c𝑒
− 

1

2𝜎𝑛
2+𝛽𝜎𝑛

2  𝜎𝑛
2 

𝛼−1
2 

e−yn
2

∞

0

𝑑𝜎𝑛
2 

=  𝑐𝑒−𝑦𝑛
2

∞

0

𝑒− 2𝛽−1 𝜎𝑛
2

 𝜎𝑛
2 𝛼+1

2 −1𝑑𝜎𝑛
2 

=
Γ𝛼

𝑛 2𝜋𝛽𝛼
e−yn

2
 



Turkish Journal of Computer and Mathematics Education 

 

___________________________________________________________________________ 

4095 

 

 
 

Research Article  

Vol.12 No.6 (2021), 4089-4097 

  Where, 𝑐 = 𝑛 2𝜋
βα

Γ𝛼
 

The largest viral replication depends on the extraneous factors 𝐶𝐷4
+𝑇  DNA and it’s the next stage viral density 

is given by; 

=
Γ𝛼

n 2πβα
e−yn

2
.

Γ𝛼 + 1
2 

 2β − 1 α+1
2 
 

=
Γ𝛼𝑒−𝑦𝑛

2
𝛼! Γ 1

2 

𝑛 2 Γ 1
2  2𝛽 − 1 𝛼+1

2 
 

=
Γ𝛼𝑒−𝑦𝑛

2
𝛼!

𝑛 2 βα 2𝛽 − 1 𝛼+1
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=
Γ𝛼 + 1 𝑒−𝑦𝑛

2

𝑛 2 βα 2𝛽 − 1 𝛼 2𝛽 − 1 
1

2 
 

The viral density is illustrated through the sample data assumed for the scale parameter of prior 

distribution. 

Numerical results 

Table: 1 

             Table: 1 illustrates density of viral load for the largest viral replication for different time periods with 

special case 𝑛 = 10, 𝛽 = 1 based on the scale parameter of the prior distribution. 

 

 

 

 

 

 

Graph: 1 

 

Graph: 1  illustrate that density viral load various scale parameter of prior distribution.   

Table: 2 
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largest viral replication
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Prior distribution 

parameter 
𝚪𝜶 + 𝟏𝐞−𝐲𝐧

𝟐

 𝟐 𝟐𝜷 − 𝟏 𝜶 𝟐𝜷 − 𝟏 
𝟏

𝟐 𝜷𝜶
 

Posterior density 

1 0.63 

2 1.72 

3 2.54 

4 1.67 

5 0.55 
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              Table: 2 illustrates largest the viral load for different time periods with special case 𝑛 = 10, 𝛼 = 1 

based as the various shape parameter of the prior distribution. 

 

 

 

Prior Parameter 

𝜷 

Posterior Density 

𝚪𝜶 + 𝟏 𝐞−𝐲𝐧
𝟐

 𝟐 𝟐𝜷 − 𝟏 𝜶 𝟐𝜷 − 𝟏 
𝟏

𝟐 𝜷𝜶
 

1 0.635 

2 0.035 

3 0.0084 

4 0.0032 

5 0.0015 

6 0.0008 

7 0.0005 

8 0.0003 

9 0.0002 

10 0.0001 

 

Graph: 2 

 

Graph: 2 illustrate that viral density based on the various Shape Parameter of the Prior Distribution. 

Conclusion 

                    The major challenge for worldwide health department to treat the HIV infection. If there is no 

specific medicine to the treatment of HIV infection. World Health Organization (WHO) and other related 

sectors are planning to how optimize the cast and extended the HIV patient’s future life time. In that situation, 

Development of a Statistical Model useful to predict the future replication of the virus in the human body. So, 

this research is concentrated to develop a new ARMA G (p, q) model for largest viral replication and also find 

the prediction distribution based on the prior distribution. The prediction viral replication for future period 

essential for determination of medicine and patient life time. This kind of prediction is very much useful for 

health and related departments in the Government sector for the Budget Planning.      
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