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Abstract: Squeezing in multi mixing process was studied by number of authors using perturbation method. In this paper we 
obtained squeezing in six wave mixing process with a high coherent pump beam. We used a very good approximation and 
found larger squeezing at large interaction times  
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1. Introduction  

Squeezing of electromagnetic wave reflects nonclassical nature and cannot be explained by classical optics [1-

2]. Squeezing has very good applications in field of detection of gravitational wave [3], optical communication 

and quantum information theory [4-10], in resonance fluorescence [11], quantum teleportation [12-15], in 

quantum cryptography [16] and study of dense coding [17]. 

Process of multi wave mixing has been used for theoretical and experimental study of squeezed state 

generation [18-20]. Quantum mechanical treatment of mixing of waves have also been studied [21-22]. Mixing of 

wave have been used in different form to study squeezing such as difference squeezing, sum squeezing, squeezing 

in four wave mixing process.  

Some authors studied amplitude squeezing in six wave mixing using perturbation theory [26]. We reexamine 

squeezing in six wave mixing in the present paper by an intense coherent pump mode and under a much better 

approximation, which provides the validity of results for larger interaction times. We found larger squeezing at 

large times. 

2. Definition of Ordinary and Amplitude Squared Squeezing  

Generally, quantum fluctuations in both the quadratures are not always equal. For anyone quadrature phase 

may have reduced quantum fluctuations at the rate of increased quantum fluctuations in another quadrature phase 

so that the product of both the fluctuations still follows Heisenberg’s uncertainty principal relation. This 

phenomenon is called squeezing of the electromagnetic field. 

We define operators θX  and θY  by 

i i1
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†  , 
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For these operators, if θ θ θX X X   , θ θ θY Y Y   , the minimum variances (minimum against 

variation of θ ) are seen to be 
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where a and a† are annihilation and creation operators, and N(= a†a) is number operator. 

 If ( )
2

min
<1 4θX , θX is said to be ordinary squeezed. 

Conditions for this to occur is  

2
-a a a† <

22
aa                (3) 

respectively. 
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3. Interaction Hamiltonian for six wave mixing process and the Time -evolution operator 

Consider the six wave mixing process which involves the absorption of two pump photons of frequency ω1 and 

the emission of 3 probe photons of frequency ω2 and one single photon of frequency ω3 with2𝜔1 = 3𝜔2 + 𝜔3. 

The interaction Hamiltonian for this process is 

𝐻𝐼 = 𝜔1𝑎†𝑎 + 𝜔2𝑏†𝑏 + 𝜔3𝑐†𝑐 + 𝑔(𝑎𝑎𝑏† 𝑏† 𝑏† 𝑐† + 𝑎†𝑎† 𝑏𝑏𝑏𝑐)                         (4)             

where ( , )a a†
 are operators for pump mode, ( , )b b† and ( , )c c†  are operators for the other modes in 

interaction picture and  g is coupling constant. For an intense pump mode initially in the coherent state 


 θ i 

xe  with 1x  , we may write 


  i 

a Ae , ( )= +A x A , 
θiθi

eCceBb
  

  ,       (5)  

and therefore the interaction Hamiltonian will be in the form, 

𝐻𝐼 = [𝐻𝐼
(0)

+ 𝐻𝐼
(1)

+ 𝐻𝐼
(2)

],                     (6) 

𝐻𝐼
(0)

= 𝐺( �̅�†3𝐶̅ + �̅�3𝐶̅),                  (7) 
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2𝐺

𝑥
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(2)
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𝐺

𝑥2 (�̅�2 �̅�†3𝐶̅† + �̅�†2�̅�3𝐶̅), 𝐺 = 𝑔 𝑥2,                                                                                              (9) 

Equation of motion for the time-evolution operator in interaction picture UI is III UHUi  .This can be 

written as , where  
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and V is solution of  

.
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using Equation (10), which gives 
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expressions for 
(1)

IH and 
(2)

IH are obtained as given below- 
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4. Ordinary squeezing in four wave mixing process 

Using solution of V, for correction up to second order in 1 x , we get, 

0 I IU =U V
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These lead to 
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              (17) 

In above expression the coefficient of 2 ( )αcos θ θ is negative and all other term is positive and so 

squeezing can be obtained for positive value of  2 ( )αcos θ θ  i.e. if  αθ - θ  exist in between 0 to 
4
  or in 

between 3
4
  to  . 

5. Conclusion and Discussion 

In this paper we consider 2sinh Gt << 
𝑛𝑎

√𝑛𝑏𝑛𝑐
, where 𝑛𝑎, 𝑛𝑏 , 𝑛𝑐 are the number of photons in given modes and 

number of photons in pump mode is much greater than one. Our results are valid for much larger times of 

interaction. 

In present work radiation squeezing by mixing of six waves has been examined and result showed that 

squeezing is dependent on value of “gt”. Here we get large radiation squeezing in fundamental mode for small 

interaction time. In equation (17), coefficient of cos2 (   ) is positive and other terms are small negative 

values and hence squeezing can be obtained only when cos2(   ) is negative, i.e. if    lies between 

3 5
2 2 2
, , ....  

.We investigated for the case cos2 (   )  = -1 and results are plotted in  Figures 1 and 2. We 

show our results for x2=100, in figure 1, Gt lies between 0 to 2 and we get larger squeezing which is increasing 

with time. We show our result for gt=10-2 , x2 lies between 0 to 100 in figure 2 and we get larger squeezing for 

small interaction time. One may obtain desired degree of squeezing for larger interaction time by using different 

kind of higher order nonlinear process 



Turkish Journal of Computer and Mathematics Education  Vol.12 No.13 (2021), 419-423 
 

422 

 

Research Article 

 

Figure 1: Graph showing variation of 
2 1

4θΔ X (t) -  Gt for x2=100 and cos 2( )  = -1 

 

Figure 2: Graph showing variation of 
2 1

4θΔ X (t) -  with  x2=100  and gt =10-2 
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