
Turkish Journal of Computer and Mathematics Education Vol.12 No.2 (2021), 412- 419

412

Research Article

Research Article

Bio Inspired Approach for Generating Test data from User Stories

A.Tamizharasi

a, Dr. P.Ezhumalai

b, S. Remya Rose

c, P.Sureshd, S. Logesswarie

A
Department of Computer Science and Engineering,RMD Engineering
College,Chennai, India.
bDepartment of Computer Science and Engineering,RMD Engineering College,Chennai, India.
C

 Department of Computer Science and Engineering,RMD Engineering

College,Chennai, India.
dDepartment of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
eDepartment of Computer Science and Engineering,RMD Engineering College,Chennai, India.

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: In Agile model where the software prototypes are developed frequently and also rapidly, testing becomes more

critical. Generating an effective Test case for complex system is a challenging task involved in software testing. The major
research challenge in this area includes the test case generation with limited resources, identifying the essential functional
requirement that plays a crucial role and automation of the test case generation process. To solve this issue, a hybridized bio
inspired approach is proposed to generate test cases from the user stories which accepts the business requirements as input,
processed using NLP and develop functional test cases from it. The proposed algorithm is compared with other existing
algorithms and the experimental results proved that the proposed algorithm is more efficient in many cases.

Keywords: Software Testing, Agile model, Test case generation, Bio inspired approach, NLP.

1. Introduction

Software Testing is the one of the most important phase in software development which consumes nearly 40-

60% of effort, time and cost. Due to the end users urge to complete the project in short span with high quality and

defects free, the testing activity has to be started as early as possible to fix the bugs at early stage. Generating an

effective Test case plays a major role in software testing.

Test generation process deals with creation of a set of testing conditions which can be used for validating the

adequacy of the application. Different techniques like model based technique which generates the test cases from

the UML models, search based test generation which uses meta heuristic techniques that direct the search towards

the potential areas of input space, random approaches that generates test cases based on assumptions, Goal based

test data generation approach that cover a particular section, statement or function, specification based techniques

that generates test data based on the formal requirement specifications, has been used but still there are a lot of

research issues available.

Various metaheuristic techniques that have been applied in test case generation includes Genetic Algorithm,

Particle Swarm optimization,cuckoo search, Ant colony optimization etc. guided by the fitness function for

determining the quality of the search results. Recently, the meta-heuristic algorithms are used for generating test

cases for multiple path coverage in one run.

Many previous researches have been conducted for generating the test cases from UML diagrams say Activity

diagram, use case and state chart diagrams etc[2]. UML diagrams reduce the problem’s complexity with increase

in the product sizes and complexities. However, the approaches used previously did not provide a clear

comparison about it. The testing practitioners decompose the system based on the different use scenarios from

which the formal representations are created and then the test scenarios are derived from these intermediate

representations. Quality of these specifications is an important factor to be considered in order to generate an

effective test data. Using semi-formal specification facilitates the test automation process but still, its cost

expensive and not preferred much. Natural language-based representations are generally preferred in

Requirements Engineering to facilitate easy communication among the stakeholders.

Furthermore, generating test scenarios in the initial phase of the development cycle provides more control on

the coding and testing part which in turn may help in reduced cost and time. Thus, this proposed work will focus

on generating test cases from requirements i.e. in the starting phase of the development itself.

In Agile process, User stories describe the functional requirements of the system written in Natural Language.

The Natural Language Processing (NLP) tools helps in linguistic Analysis say, classifying the terms in to single

part of speech which in turn can be developed to UML design. In Model-Based Testing, the test cases are

generated at the early stages of development stages so that it is easy for identifying the inconsistencies and

improve the specifications.

Bio Inspired Approach for Generating Test data from User Stories

413

The second section discusses about literature survey and dimensions for research work in this field.

Subsequent section describes the proposed algorithm for generating test data from user stories. Conclusions are

given in the last section. This paper aims at better evaluation and comparison of test data generated from existing

bio inspired approaches with the proposed method.

2. Related Work

AnnibalePanichella et.al proposed a Dynamic Many-Objective Sorting Algorithm (DynaMOSA) for

addressing the test case generation problem in the context of coverage testing. [1] Covers three coverage criteria

say branch coverage, statement coverage and strong mutation coverage and does not include non-coverage criteria

like execution time and test size etc.

MeryemElalloui et.al proposed a transformation process (NLP) that converts the user stories into UML use

case diagrams. [2] has features that includes pre-processing of user stories, parse tree construction for each user

story and then extracts actors, use cases and relationships from it. Use case diagrams are built by applying NLP

techniques. NLP analysis encounters a problem from complicated sentences. The technique helps the designer in

clear interpretation of user stories that reduces the time to draw use case diagrams and improve the workflow.

Pardeep Kumar Arora et.al used the UML class diagram, use case and activity diagram for identifying changes

at syntax and semantic level [3]. Agents are developed to collect the changes in distributed environment but did

not address about the Formal specifications.

Ali Shahbazi et.al proposed an Adaptive Random String Test case generation (FCFS) and Evolutionary String

Test Case Generation methods (Genetic Algorithm) [4] Focuses on string inputs rather than other test case types

like trees or graphs.

Meiliana et.al [6] uses modified DFS algorithm that generates test cases from UML diagram at early stages

of SDLC.A graph say System Testing Graph (SYTG) is designed and the test case data are stored into this graph.

[7] translates automatically the Restricted-form of Natural Language requirements specified as Scenarios into

executable Petri-Net models from which test scenarios are generated.

 Kumar introduces a semi-automatic tool UMGAR [8] that generates UML models from natural language

requirements using Natural Language Processing tools. UMGAR used syntactic reconstruction for translating the

complex into simple requirements.

Shunkun Yang et.al proposed a search based method for generating test data [9]. Regeneration Genetic

Algorithm (RGA) solves the population aging problem. RGA was efficient compared to the traditional GA and

few other methods that are helpful in efficient testing with increasing number of test inputs. Deepak Kumar

presented a survey on applying genetic algorithm for random generation of test cases and compared with various

hybridized Genetic algorithm [10].

RashmiRekhaSahoo et.al proposed a distance based fitness function for generating test inputs for path

coverage. [11] Uses search based approach PSO with ICF function Abdullah B. Nasser et.al proposed a Flower

Pollination Algorithm [12] which reduced the size of test data thereby saving time and effort. [13] Introduced a

modified Bacterial Foraging Technique (BFT) for solving the economic load dispatch problem. The randomness

in the movement of bacterial foraging is overcome by heading the search towards promising locations based on

the best previous values in the particle swarm optimization approach. The modified approach was able to handle

high order cost polynomials with no additional cost or effort. Also did not require additional memory.

SaeedMotiian et.al proposed a novel algorithm [14] that generates the search faster than the standard Particle

Swarm Optimization algorithm thereby minimizing the drawback of getting trapped at a local optimal solution

during search. They used Hidden Markov Model (HMM) as the fitness function to find the minimum of the

Ackley function.

Siva Suryanarayana et.al proposed a Flower Pollination Algorithm for the test case optimization in [15] with

high fitness function. Test case optimization is mainly used in software testing for improving the fitness of test

input generated. PriyankaDhareula et.al proposed genetically modified Flower Pollination algorithm (GM-FPA)

[16].

3. Test Case Generation From User Stories

Research issues which motivated this work are: 1) lacking the ability to identify the major domain

requirements 2) lack in generating an optimized test cases leading to fault recovery.

The proposed framework focuses on generating test cases from agile user stories. First, the requirements are

captured in the form of user story and then processed with NLP from which actors are identified for generating

the use case model. From the use case diagram the test cases are generated and optimized using the hybridized

bio inspired algorithm.

3.1 Transformation of User Stories to Use Cases Using Nlp

In Agile development, User story capture the functional requirements in the below format “As a [role], I want

[behavior], so that [business_value]".First, we convert the User storiesusing Natural Language processing

techniques.

Features of the user story is parsed using the POS Tagger which retrieves the nouns and verbs which are

matched with the test scenario descriptions we have already specified. If it doesn’t match, the lemma and

synonyms of the search words can be used for comparison.

Test Scenario is the textual representation of the interaction between the system and the user. Tree Tagger

parser and POS Tagger are used for preprocessing the user story. By applying Part Of Speech tags, the terms in

A.Tamizharasi a, Dr. P.Ezhumalai b, S. Remya Rose c, P.Sureshd, S. Logesswarie

414

the test scenario are categorized into noun or adjective or verbs. Every item in the user story is converted into a

single part of speech. After parsing, the nouns are taken as actors and verbs as use cases for generating the use

case diagram using Java. ElementFactory Class is for creating actors and use cases. The ModelFactory class

creates model, adds elements generating the UML file. The rules used are

 Each first Noun, singular or plural Noun is an Actor.

 All the Verbs or past participle are use case.

 For each story an association relationship exists between the actor and the use case.

Algorithm 1:

1: Input: User Requirements as user story

2: Initialize Ex_ Actor with existing actors

3: Initialize currActor with current actor

4: Initialize PS with part-of-speech

5: Initialize isFst as True

6: Initialize isAvailable as False

7: if (((PS = = N)||((PS= = S_Noun)

 || (PS= = Comp_noun)))&&isFst)

 8: for each (Actor Ac)

9: if (isAvailable == True) then

10: search actor

11: currActor= Ex_Actor

 12: end for

 13: if (isAvailable = False) then

14: Ac = createActor

15: if ((PS==Verb) ||(PS==pastparticiple))

16: V = add (tokn)

17: UseCase UC = ElementFactory.createUsecase(V)

18: Association asc = ElementFactory.createAssociation(currActor, UC)

Once the Actors and use cases are generated, the flows among the activities are identified and then the

Dependency graph is generated. Vertices/Nodes are the use cases and the edges represent the dependencies

between use cases.

3.2 Hybridized Bfa-Pso-Ga Based Test Case Generation and Optimization

A new hybridized evolutionary algorithm is proposed for generate optimized test cases that maximizes the

fitness function f (λ) = log P(o/ λ). The fitness function helps in finding the bestoptimized test cases and helps

in identifying the direction of search as well as magnitude of the iteration [25]. The Proposed method combines

the Bacterial Foraging Algorithm (BFA) with Particle swarm optimization (PSO) and Genetic Algorithm (GA)

to overcome the random movement of search, thereby search will be directed towards global optimum test cases

without getting trapped at the local optimal solution.

Bacterial Foraging Algorithm (BFA) [24] evolved from the E.Coli bacteria’s foraging mechanism which

identifies the higher nutrient places thereby avoiding noxious places. BFA is applied for solving many

optimization issues like optimal control, load balancing, harmonic estimation etc.

Chemo taxis is a foraging behavior which does the optimization process. From the current position, search

will be directed to the position that has a minimum fit. The speed of the search can by influenced step size Cs.

Continuing the search in the same direction is swimming and changing the direction of search is referred as

tumbling. The direction after tumble is based on the position of every target and its velocity using Particle Swarm

Optimization (PSO) technique [23][26][27][28]. The random movement of BFA is overcome by using the

particle and swarm best values. At each increment i, velocity VL and position PS of each node are updated using

(i) and (ii)

VLi= VL i-1 + C1 * rand()* (p_bst – PS i)+ C2 * rand() * (g_bst - PSi) (i)

"PS i = PS i-1+ VLi" (ii)

Initially velocity are chosen randomly generated within the range [-VLm, VLm] where VLm is the maximum

value that can be assigned to any VLi. p_bst and g_bst are the best values of the particle and swarm. rand () takes

a value between 0 and 1. C1, C2 are the cognition and social components. Usually it takes a value 2.

Bio Inspired Approach for Generating Test data from User Stories

415

Thus, the test cases are searched from one position to another based on the sum of current input and the step

size and direction generated from PSO. Thus the search will be directed towards the global optimum test case

every time.

If at target position, the fitness value is lower than the previous value then the target will swim with the step

size Cs till it reaches the minimum fitness value but only for a certain number of steps, SN. After swimming, it

tumbles. Then in reproduction stage, after CHN chemotactic steps, the fitness values of all the target test data are

sorted in ascending order based on their accumulated cost function value.

Using the crossover mechanism of Genetic Algorithm (GA) [22], the test cases having highest TCfit is

eliminated and the other test cases are taken as the parent for the next iteration. Two sets of parents are selected

from the fittest group and cross over are done for creating a number of new test cases.

Append the parent test case (TCfit) and the newly created test cases to form the all possible set of test inputs.

After RN reproduction steps, the test cases with probability value 0 to 1 and lower than certain threshold value

(Ped) are removed and those data having probability value higher than Ped keep their current position. After

elimination and dispersal step, search will continue until maximum reproduction steps are achieved and then

followed by other elimination and dispersal event till maximum EN events are achieved. A detailed pseudo code

for hybrid bacterial foraging algorithm is given in Algorithm 2.

Algorithm2 Hybrid Algorithm

Input: Use Case Dependency Graph

Output: Optimized Test Cases

 Initialize CHN, RN, EN, SN, Cs, VL, PS

 Elimination-Dispersal Step: while x <= EN

 x= x+1

 Reproduction Step : while y <= RN

 y= y+1

 Chemotaxis Step : If z <= CHN

 For each node i

 While (swm< SN)

 swm= swm + 1

 Compute VLi= VL i-1 + C1 * rand()* (p_bst– PS i)+ C2 * rand() * (g_bst – PSi)

 Compute" PS i = PS i-1+ VLi " If (f (PSi) > f(PSi-1))

 Let f (PSi) = f(PSi-1)

 Compute new PSi

 Else

 swm= SN

 End if

 End while

 Compute TCfit

 Eliminate test cases with highest TCfit. Consider as the parent for next generation.

 Cross over 2 parents from best fit to create number of new test cases

 Append the parent test case (TCfit) and the newly created test case.

 End for

 End if

 End while

 Eliminate the test cases having Ped

 End while

4. Experimental Results and Analysis

The efficiency of the proposed algorithm is determined by applying on a dataset extracted from the case study

online shopping and compared the manual and automatic generation of use cases and actors. Table 1 and Table 2

shows all the outputs achieved from the 100 user stories taken for the online shopping case study.

A.Tamizharasi a, Dr. P.Ezhumalai b, S. Remya Rose c, P.Sureshd, S. Logesswarie

416

Table 1. Manual Evaluation of use cases and actors

Actors Use

Cases

Relationship

100 170 170

Table 2. Automatic Detection of use cases and actors

Actors Use Cases Relationship

99 165 165

 Items identified by both plug-in and manual evaluation are taken as True Samples (TS) and the items

identified by plugin and not by manual evaluation are False Positive (FP) and items identified manually but not

by the plugin are considered as Negative Samples (NS).

Table 3. Accuracy of the proposed approach

 Actors Use Cases Relationship

TS FP NS

TS FP NS

TS FP NS

98 1 1 150 20 25 110 23 26

Precision

P = 98%

P = 92%

P = 90%

Recall

 R= 98%

R= 88%

R= 89%

A good fitness function helps in finding the best solution closer to the optimal result and helps to calculate the

direction of search of the optimized test input [25].

The fitness function taken is

f(λ)=log⁡〖P (o/λ)〗

The parameters used for the hybrid BFA algorithm are as follows:

 Size =500

 Chemotactic step Cs = 10

 Swims SN = 20

 Reproduction steps RN= 15

 Elimination – dispersion steps EN =15

 Probability =0.1

 Acceleration constants = 2

 Inertia weight =0.7

 Velocity =100

The optimal solution helps in maximizing the fitness function f(λ) and the proposed hybrid BFA is

implemented using MATLAB. Table 4 and Table 5 show the statistics of the test case generated and its transition

coverage.

Table 4. Test Cases for Online Shopping

Algorithm
Iteration

Taken

Average

Test Case

generated

Execution

Time(sec)

BFA 6 89 39.102

PSO 5 74 35.64

BFA-

PSO-GA
2 60 29.325

Bio Inspired Approach for Generating Test data from User Stories

417

Table 5. Test Case Statistics for Online Shopping

SNo Use Case
Optimized

Test Cases

%

Coverage

1 Login 13 96%

2
Select

Product
15 100%

3
Add to

Cart
3 97%

4

Select

payment

mode

9 100%

5
Make

Payment
20 97%

Figure 1 shows the average number of test cases generated by BFA, PSO and the hybrid approach BFA-

PSO-GA algorithm. The proposed algorithm generates the optimized number of test case for the scenario with

minimum execution time.

Fig.1. Comparison of Number of Test Cases Generated Using BFA, PSO and Proposed Algorithm

Figure 2 show that the proposed approach generates the optimized test data in a minimum number of iterations

when compared with BFA and PSO. The random movement in the Chemotaxis step of BFA algorithm is reduced

by taking the pbest and gbest values which leads to the optimized position.

Fig. 2. Test Case Generated Vs. Iterations

The effort for test case generation is calculated using

EffortE=TimeTaken/ TestcasesGenerated

The number of test case generated for online shopping scenario is 60 and the time taken is 29.3 sec. For the

feasibility study, the time taken for generation helps in determining which method is faster, manual or automatic.

The effort spent on generating test cases is the average time spent for generating each test case. The proposed

approach takes less time to generate test cases when compared with other algorithms. Also the effort required

for each test case is lesser than the PSO and BFA algorithm. Less redundant test cases and test steps covering the

boundary conditions helps in improving the quality of the test cases generated.

5. Conclusion

The proposed approach focus on capturing the user stories in an agile environment there by generating the

UML model. Hybrid BFA-PSO-GA Algorithm generates the test cases from the Use cases. In the hybrid

approach, the random movement of Chemotaxis step in BFA is reduced by finding the new position based on the

previous best position pbest and gbest which in turn improves the convergence speed and also finds the global

optimized test cases. The simulation results proved that the proposed approach generates the optimal test case

A.Tamizharasi a, Dr. P.Ezhumalai b, S. Remya Rose c, P.Sureshd, S. Logesswarie

418

with highest test coverage at the early stage of the software development. Furthermore, our approach is more

efficient than BFA, PSO and others as it generates the test cases in less iteration and with greater test coverage at

a statistically robust level.

References

1. Annibale Panichella, Fitsum Meshesha Kifetew and Paolo Tonella “ Automated Test Case

Generation as a Many – Objective Optimization problem with dynamic selection of the Targets” in

IEEE Transactions on Software Engineering, Vol.44, No.2, Feb 2018.

2. Meryem Elallaoui, Raja Touahni, Khalid Nafil, “Automatic Transformation of user stories into

UML use case diagrams using NLP Techniques” , International Conference on Ambient System,

Networks and Technologies, Procedia computer science 130:42-49, January 2018,

DOI:10.1016/j.procs.2018.04.010.

3. Arora Pardeep, Bhatia, Rajesh, “Agent Based Regression Test Case Generation using Class

Diagram, Use cases and Activity Diagram” International Conference on Smart Computing and

Communications, Procedia Computer Science, 747-

753,January2018,DOI:10.1016/j.procs.2017.12.096.

4. Ali Shahbazi , James Miller “ Balck –Box String Test case Generation through Multi-Objective

Optimization” in IEEE Transactions on Software Engineering, Vol.42, No.4, April 2016.

5. Jason Arbon, “AI for Software Testing”, Pacific NW Software Qulaity Conference,2017.

6. Meiliana, Irwandhi Septian “Automated Test case Generation from UML Activity Diagram and

Sequence Diagram using Depth First Search Algorithm”, International Conference on Computer

Science and Computational Intelligence, October 2017.

7. Edgar Srmiento, Julio, Leite S.P, “Test Scenario Generation from Natural Language Reguirements

Descriptions based on Petri-Nets” in Electronic Notes In Theoretical Computer Science 329(2016)

123-148.

8. D.D Kumar, M.A Babar, “ An Automated Tool For Generating UML Models From Natural

Language Requirements”, International Conference On Automated Software Engineering , pp 680-

682. (2009).

9. Shunkun Yang, Tianlong Man, Jiaqi Xu, Fuping Zeng, Ke Li, “RGA: A Light Weight And

Effective Regeneration Genetic Algorithm For Coverage Oriented Software Test Data Generation”,

Information And Software Technology 76(2016) 19-30.

10. Deepak Kumar, Manu Phogat, “ Genetic Algorithm Approach For Test Case Generation

Randomly: A Review”, International Journal Of Computer Trends And Technology, Volume 49,

No 4, July 2017.

11. Rashmi Rekha Sahoo, Mitrabinda Ray, “PSO Based Test Case Generation For Critical Path Using

Improved Combined Fitness Function”, Journal OfKing Saud University, Computer And

Information Sciences, 32(2020) 479 – 490

12. Abdullah B Nasser, Abdul Rahman, Alsewari Nasser M Tairan, Kamal Z Zamli, “ Pairwise Test

Data Generation On Flower Pollination Algorithm”, Malaysian Journal Of Computer

Science,pp:242-257,Sep2017DOI:10.22452/mjcs.vol30no3.5.

13. A Y Saber, G K Venayagamoorthy, “Economic Load Dispatch Using Bacterial Foraging

Optimization With Particle Swarm Optimization Based Evolution,” Proceedings Of The IEEE

Swarm Intelligence Symposium, Sep(2008).

14. Saeed Motiian And Hamid Soltanian Zadeh, “Improved Particle Swarm Optimization And

Applications To Hidden Markov Model And Ackley Fnction” IEEE Conference On

Communication, October 2011, DOI:10.1109/ICBNMT.2011.6155997.

15. Siva Suryanarayana C H,Satya Prakash Singh, “Flower Pollination Algorithm For Effective Test

Case Optimization In Software Testing”, International Journal Of Engineering And Technology,

Volume 9, Issue-1, October 2019.

16. Priyanka Dhareula , Anta Ganpati , “ Sofyware Test Case Prioritization Using Genetically

Modified Flower Pollination Algorithm (Gm-FPA)”, International Jour Nal Of Scientific And

Technology Research,Volume 8, Issue 12, December 2019.

17. L V Xuewei, Huang Song Hui, Zhanwei Ji, Haijin, “Test Case Generation For Multiple Paths

Based On PSO Algorithm With Metamorphic Relations”, IET Software 2018, DOI: 10.1049/iet-

sen.2017.0260.

Bio Inspired Approach for Generating Test data from User Stories

419

18. M R Keyvanpour, Homayouni, Hsein Shirazee, “ Automatic Software Test Cse Generation”,

Journal Of Software Engineering 5(3): 91-101, 2011, DOI: 10.3923/jse.2011.91.101.

19. Dalal Sandeep, Chhillar, Rajendar, “ A Novel Technique For Generation Of Test Cases Based On

Bee Colony Optimizatiomn And Modified Genetic Algorithm (BCOmGA)”, International Journal

Of Computer Applications, 68(19):12-16, April 2013, DOI:10.5120/11687-7359.

20. S S Bodiwala , D C Jinwala, “Optimizing Test Case Generation In Glass Box Testing Using Bio –

Inspired Algorithms”, International Conference On Software Engineering And Service

Science(ICSESS), 2016,pp 40-44, doi: 10.1109/ICSESS.2016.7883012.

21. Noraida Tsmail, Rosziati Ibrahim, Noraini Ibrahim, “Automatic Generation of Test Cases from

Use-case diagram”, Interantional Conference on Electrical Engineering and Informatics, June 17-

19,2007.

22. H. Haga , A.Suehiro, “Automatic test case generation based on Genetic Algorithm and Mutation

Analysis”,IEEE International Conference on Control System, Computing and Engineering, Penang,

2012, pp. 119-123, DOI: 10.1109/ICCSCE.2012.6487127.

23. S.Tiwari, K.K.Mishra, A.K. Mishra, “Test case Generation for modified code using a variant of

Particle Swarm Optimization (PSO) Algorithm”, 10th International conference on Information

Technology:New Generations , Las vegas, 2013,pp 363-368, DOI: 10.1109/ITNG.2013.58.

24. A.Tamizharasi, J.Jasmine Selvathai,A.Kavi Priya, Maarlin R, Harinetha, “Energy Aware Heuristic

Approach for Cluster Head Selection in Wireless Sensor Networks”, Bulletin of Electrical

Engineering and Informatics, Vol. 6,No. 1, March 2017, pp. 70-75, DOI:10.1159/eei.v6i 1.598.

25. A.Tamizharasi, A.Kavi Priya, “Heuristic Approach for Optimizing the localization of Wireless

Sensor Networks”, International Journal of Applied Engineering Research, Vol. 11, No. 4(2016),

pp 2327-2331.

26. Murugan, S., Jeyalaksshmi, S., Mahalakshmi, B., Suseendran, G., Jabeen, T.N. and Manikandan,

R., 2020. Comparison of ACO and PSO algorithm using energy consumption and load balancing in

emerging MANET and VANET infrastructure. Journal of Critical Reviews, 7(9), p.2020.

27. Sampathkumar, A., Murugan, S., Sivaram, M., Sharma, V., Venkatachalam, K. and Kalimuthu, M.,

2020. Advanced Energy Management System for Smart City Application Using the IoT. In Internet

of Things in Smart Technologies for Sustainable Urban Development (pp. 185-194). Springer,

Cham.

28. Sampathkumar, A., Murugan, S., Rastogi, R., Mishra, M.K., Malathy, S. and Manikandan, R.,

2020. Energy Efficient ACPI and JEHDO Mechanism for IoT Device Energy Management in

Healthcare. In Internet of Things in Smart Technologies for Sustainable Urban Development (pp.

131-140). Springer, Cham.

