
Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2591

Artificial Immune System Algorithm for Training Symbolic Radial Basis Function

Neural Network Based 2 Satisfiability Logic Programming

Shehab Abdulhabib Saeed Alzaeemi1, Saratha Sathasivam2, Muraly Velavan3, Mustafa

Mamat4

1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
2School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
3School of General & Foundation Studies, AIMST University, 08100 Bedong, Kedah, Malaysia
4Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, 21300 Kuala Terengganu, Terengganu
1Shehab_alzaeemi@yahoo.com, 2saratha@usm.my, 3muraly@aimst.edu.my,4 must@unisza.edu.my

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 23 May 2021

Abstract—The process of radial basis function neural network based 2 Satisfiability logic programming (RBFNN-2SAT)

depends mainly upon an adequate obtain the linear optimal output weights with the lowest iteration error. In this paper, the

capability and effectiveness of the Artificial Immune System algorithm beside RBFNN-2SAT approach are investigated to

improve the linear output by find the best output weights. In this paper, AIS algorithm is presented for enhancing the weights

during training RBFNN-2SAT. The performance analysis of the presented technique RBFNN-2SATAIS is compared to three

techniques, namely the no-training method, which is incorporated with radial basis function neural network 2SAT (RBFNN-

2SATNT), the half-training method, which is incorporated into radial basis function neural network 2SAT (RBFNN-2SATHT),

in addition to a genetic algorithm incorporated into radial basis function neural network 2SAT (RBFNN-2SATGA). The

simulated results showed the paradigm performance vis-à-vis mean absolute error (MAE) and Root Mean Square Error

(RMSE), as well as Schwarz Bayesian Criterion (SBC), along with the CPU Time. Accordingly, the introduced approach, i.e.,

RBFNN-2SATAIS outperformed the corresponding conventional approaches regarding robustness, accuracy, as well as

sensitivity throughout simulation. The simulation established that the artificial immune system algorithm has effectively

complied in tandem with radial basis function neural network 2SAT.

keywords—Artificial Immune System Algorithm; Radial Basis Functions Neural Network; Genetic algorithm; 2

Satisfiability.

1. Introduction

The radial basis function neural network (RBFNN) in Artificial Neural Network (ANN) has been broadly

implemented in many fields owing to the simpler structure of the network, better approximation capabilities, as

well as faster speed learning [1]. RBFNN represents a neural network, which is feedforward, having three layers

of the neuron, including an input layer, an output layer, and a hidden layer. Neurons that belong to the same layer

receive inputs only from the neurons in the previous layer and send their values only to neurons in the next layer.

The goal of the existence of these three layers involves minimizing the classification, as well as the RBFNN error

of prediction [2]. The proper function of the radial basis function neural network (RBFNN) is primarily reliant

upon the adequate parameters’ choice of basis functions. A simple approach for training RBFNN assumes the fixed

radial basis functions in defining the activation of the hidden units. The best set of RBFNN-2SAT of output weights

can be determined directly via using a metaheuristics algorithm when the RBFNN parameters are fixed via logic

programming 2 SAT. 2SAT was successfully presented in 2017 as the most optimum logic programming in the

system of the artificial neural network, including other metaheuristics algorithm [3]. This metaheuristics algorithm

has a wide-ranging implementation to locate the nearest optimum solution for RBFNN [4, 5]. AIS, which is

enthused by the immune system, uses immunological properties to develop adaptive systems to carry out various

tasks in different research fields. These include supervised classification, as well as intrusion detection, in addition

to clustering and optimization [6, 7]. The improved binary artificial immune system, which is based on the process

of the clonal selection is presented. The binary artificial immune system, in theory, generated a plethora of works

that involve combinatorial optimization, in addition to applications of real-life. In 1996, AIS was defined in

accordance with the models of natural immune system [8]. Later, Valarmathy and Ramani [9] expanded this

perspective when a hybrid AIS along with RBFNN was proposed to advance the classification’s accuracy of the

entire Magnetic Resonance images. However, as for the perspective of logic programming in RBFNN, extensive

studies were lacking on the optimization of the RBFNN’s parameter via AIS. Mansor et al. [3] acknowledged that

AIS is the ideal training model in a 3 SAT neural network’s system compared with the remaining metaheuristics

algorithms. Through constructing RBFNN combined with 2SAT, the AIS influences on the network’s training

phase are examined in this study. The presented approach has been inspired by Hamadneh et al. [10], whereby the

main objective is to establish the RBFNN’s ideal logical model using an inclusive training method. A number of

contributions were made in this paper as follows:

mailto:Shehab_alzaeemi@yahoo.com
mailto:shehab_alzaeemi@yahoo.com

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2592

1. A novel perspective to approach an implicit knowledge is investigated using the model of the explicit

learning. A real-life problem (an implicit representation) is learnable using an explicit mathematical

representations’ specified set (2SAT logical rule).

2. This study is a pioneering work to embed a 2SAT logical rule (i.e., knowledge) in a feedforward neural

network (i.e., learner), whereby 2SAT logical rule has been embedded in the RBFNN via achieving the ideal

parameters’ value systematically, i.e., center and width.

3. Due to training the introduced RBFNN has always converged to the suboptimal output weight, two major

metaheuristics are investigated in this work, including evolutionary (GA), (AIS), and two methods, including the

no-training (NT) method, as well as the half training (HT) method. The RBFNN training model aims at obtaining

the lowest error of iteration and the ideal output weight. It is worth mentioning that wide-ranging experimentations

were performed using different performance metrics. The aims of these experiments involved revealing the AIS

effectiveness in the introduced RBFNN-2SAT.

4. The introduced RBFNN is expected to provide a new perspective as RBFNN obtained the 2SAT output

weight via diminishing the objective function with the structurally systematic parameter. Therefore, the presented

method is a different approach compared to [11], in which Wan Abdullah’s method has been used to find the

accurate synaptic weight (the output weight). Both paradigms have utilized the AIS for improving the introduced

methods. However, the introduced method in this work has tackled non-binary optimization in comparison with

the existing approach. The presented method has, therefore, advanced a considerable potential for logic

programming in the neural network.

2. 2 satisfiability representation

The problem of 2 Satisfiability (i.e., 2SAT) involves determining the Satisfiability of specific sets of clauses,

containing strictly two literals for each clause [12]. This represents a given general form of Satisfiability problem,

which is classified to randomized Satisfiability, as well as the maximum Satisfiability. The problem of 2SAT is

described in a 2CNF form, whereby the 2SAT problem’s three components include:

(a) Comprise a specific set of the m variables, these are 1 2, ,..., mv v v

(b) Comprise a specific literals’ set, whereby a specific literal signifies a specified variable or specified variable

negation.

(c) A specific set of n distinct clauses, these are 1 2, ,..., nl l l . Each of the clauses only comprises literals, which

are combined by only, that is logical AND.

Every single variable takes only a bipolar value, these are 1 or 0, to exemplify true/false idea. 2SAT logic aims

to identify if there exists an assignment of true values to the variables, making P Satisfiable. 2 Satisfiability

(2SAT) comprises a clauses’ set, containing two literals. The following is the general formula of the 2SAT logic:

() 2,
1 1 1

k
n k m

P C Di ji i j
==   

= = =
 (1)

 In this paper, 2SAT is the key impetus as logic programming necessitates that the program can consider 2

literals only for each clause for each execution. Many studies provided evidence that numerous combinatorial

problems are formed via 2SAT logic [13- 15]. A good justification for the 2SAT logic appropriateness in

representing logical rules in a given neural network is the ability to choose two literals for every clause in the given

Satisfiability logic, thereby diminishing logical complexity of defining the relationships among variables in a

specific neural network.

3. Radial basis function neural network

Radial Basis Function Neural Network (RBFNN) is referred to as a feed-forward neural network. It was first

used by Moody and Darken [16]. In comparison with other networks, RBFNN possesses a more integrated

topology, as well as faster learning speed. Regarding the structure, RBFNN encompasses 3 neuron layers for

purposes of computation. m neurons, in input layer, indicate transported input data to a system. These parameters,

in a training phase, (center and width) can be calculated in a hidden layer; the achieved parameter is used to

calculate a given output weight in a given output layer. Gaussian activation function is presented for diminishing

dimensionality from a given input layer to a specific output layer. Thus, the Gaussian activation function ()i x

for a hidden neuron in RBFNN [17] is as follows:

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2593

()

2

'

1

22

N

ji j i

j

i

w x c

Q x


=

−

=


 (2)

() ()Q x
i x e

−
= (3)

whereby '
jiw signifies a given input weight in the middle of an input neuron j and a given hidden neuron i .

Thus, structurally, ic , i signify the hidden neuron’s center and width, respectively. Herein, jx indicates a

specific binary input value of N input neurons, as well as Euclidean norm from a specific neuron i to the j is:

2

' '

1 1 1

N N N

ji j i ji j i

j m j

w x c w x c

= = =

 
 − = −
 
 

   (4)

The final output of RBFNN ()kF x is given by the following equation:

() ()
1

j

k i i k

i

F x w x
=

= (5)

whereby () () () () ()()1 2 3, , ,.....,i kF x F x F x F x F x= indicate an output value of the RBFNN; an output weight

indicates ()1 2 3, , ,.....,i Nw w w w w= , RBFNN aims to obtain the ideal iw , which satisfies the favorite output value.

Thus, in the model above, a set of functions is provided by the hidden neuron, representing an input pattern, which

is spanned by the hidden neuron [18].

4. 2 sat programming in rbfnn

Logic programming was presented by Kasihmuddin et al. [19] by assimilating the 2 SAT rule with the neural

network. The network’s weight has been determined by the Wan Abdullah’s method [20], whereby the 2

Satisfiability logical rule’s inconsistencies are reduced. However, there is only one issue with the introduced

network, involving the weight calculation rigidness. The 2SAT is embedded into RBFNN when the variable is

represented as an input neuron. Consequently, every single input neuron jx forms  0,1 , showing True/False.

Upon using the value of the given input neuron, these parameters ic , as well as i can be computed to achieve

the ideal hidden neuron’s number. Therefore, embedding 2SAT in a form of a given logical rule allows the RBFNN

to accept additional input data with the fixed (center and width) value. Such a combination generates a model of

RBFNN. This model can classify data in comformity with 2SAT logical rule. The representation of 2SAT in

RBFNN is given in this formula:

2
1 1

k n

SAT i j
i j

P C D
= =

=   (6)

whereby ,k n . iC , as well as jD represent the atoms. When applying the method of embedding RBFNN,

Equation (6) is transformed into:

() ()
1 1

k n

i j

i j

x I C I D

= =

= +  (7)

() ()
1,

0,
i j

whenC or D isTrue
I C or I D

whenC or D is False


= 


 (8)

Both equations 7 and 8 are essential for computing the training data of every clause of 2SAT. Thus, applying

2SAT in the RBFNN is abbreviated to the RBFNN-2SAT. The RBFNN input data is provided in Table 1 as follows:

2 , , ,SATP C D E F K L=    (9)

TABLE. 1 INPUT DATA FORM/OUTPUT TARGET DATA FORM IN THE TRAINING DATA OF THE

LOGIC PROGRAMMING 2SAT FOR 2SATP

Clause ,C D  E F K L

DNF C D E F K L

The input value of the data form ix
x C D= + x E F= − x K L= −

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2594

The input data in a training set ix 0 1 2 -

1

0 1 -

1

0 1

Output target data 0 1 1 0 1 1 0 1 1

When center and width of the hidden layer is identified, RBFNN implemented Gaussian function in the

provided equation (3) to calculate the given output weight. The increased number of clauses can make RBFNN-

2SAT require a more effective learning method to locate the accurate output weight. The metaheuristics algorithm

has been implemented in this work to find the most optimum output weight, which reduces this objective function:

() ()

1

j

i i i

i

f w w x
=

= (10)

whereby iw  signifies output weight (chromosome) amid a specific hidden neuron in a specific hidden

layer and a given output neuron in a given output layer. Thus, ()i x refers to the provided Gaussian Activation

Function in RBFNN-2SAT. iy signifies the target output value in the RBFNN-2SAT. j signifies a number in the

given hidden neuron.

5. Artificial immune system algorithm in rbfhnn-2sat

Non-traditional optimization techniques have been recently enthused by nature. These techniques have

increasingly attracted attention and become popular in the combinatorial optimization field. Among these

techniques is the artificial immune system algorithm, stimulated by the human body’s immune system. AIS is

referred to as the adaptive system, enthused by the theoretical immunology, as well as the observed immune

functions, principals, in addition to the models that are applied to complicated domains [21]. Moreover, AIS has

been applied in various fields, namely computer network security and biological modeling, as well as virus

detection, in addition to data mining and robotics, along with scheduling, classification, and clustering [21, 22].

More importantly, AIS can be demonstrated as a distributed network; it has the capability of performing parallel

processing. Technically, binary AIS has been introduced based on the understanding of the immune clonal

selection. This work focuses on the implemented clonal selection in binary AIS, which is utilized to optimize the

output weight of RBFNN-2SAT by diminishing the given training error. Applying AIS in RBFNN is referred to

as RBFNN-2SATAIS. The function to be optimized in this context is as follows:

() ()

1

j

AIS i i i

i

f w w x
=

= (11)

whereby iw  signifies output weight (denoted as an antibody) amid the given hidden neuron in the given hidden

layer, in addition to the given output neuron in the specified output layer. ()i x indicates the Gaussian Activation

Function in RBFNN-2SAT. iy is the target output value in RBFNN-2SAT. j is the hidden neuron’s number and

the algorithm, which is involved in RBFNN-2SATAIS, can be illustrated as follows:

Step 1

Initialization Phase: Following Layeb et al. [23], initialize the given population of the 100 B-cells (the given

output weights) in the specified system. The B-cells representations are:

()1 2 3, , ,....,ij j j j njw w w w w= (12)

whereby nj refers to the weight output number. The presented problem’s objective function minimizes the

objective function value:

() ()

1

j

AIS i i i

i

f w w x
=

= (13)

whereby iw  designates the given output weight (the antibody) amid the given hidden neuron in the given

hidden layer, as well as the given output neuron in the specified output layer. ()i x designates the presented

Gaussian Activation Function in the RBFNN-2SAT. iy refers to the target output value in the RBFNN-2SAT. j

is the hidden neuron number.

Step 2

Affinity Evaluation: The term affinity is utilized to assess the achievable solution value for the presented

objective problem. The term, which is the B-cells affinity, designates the given objective function in the specified

algorithm. Each of the presented solutions’ affinity value in this population can be assessed to respond to applying

iy

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2595

RBFNN-2SAT. The basis function, which can calculate each solution’s affinity, in this paper, is presented in

following equation [1]:

()()

1

1
i

AIS i

Aff
f w

=
+

, 0 1ifit  (14)

Based on equation (14), the lower the ()AIS if w , the larger the given affinity value, whereby ()AIS if w

designates the presented objective function. In case () , 0.AIS i if w Aff→ → On the contrary

()1 0i AIS iAff if f w= = , and thus,  0,1iAff 
.

Following Li et al. (2018), feasible solutions have larger affinity.

Step 3

Selection Phase: Select the most optimum fifty population individuals, i.e., (B-cells) following the given

affinity measure to undertake the given cloning operator for further diversification of the given population so that

more efficient affinity can be achieved.

Step 4

Cloning Phase: This phase is key for cloning the most optimum selected B-cells. It starts with replicating the

chosen B-cells via the provided classical roulette wheel selection to a system [24]. Following [24],  designates

the population’s clone number presented by the given program to the given search space. Because it is efficient

consistency with the study of [23],  = 200 is selected.

 i
i

i

Aff
RC

Aff

b´
=

å
 (15)

where iRC is the rate of cloning or the number of clones allowed, iAff is the affinity value of a solution, and

iAffå designates all solution values of affinity in the given population, whereby this procedure gives additional

clones of the strings of the lower ()AIS if w compared with the higher ()AIS if w ,  = 200 is chosen as a fixed

given parameter.

Step 5

Normalization Phase: As a mechanism process before being enhanced by the given hypermutation process,

this phase is key in the provided algorithm. The B-cells normalized affinity is computed, namely an affinity

maturation process. The B-cells normalization’s standard formulation is presented in following equation [24]:

max

min

min

i
i

aff aff
affN

aff aff

-

-
= (16)

whereby iaffN designates normalizing the B-cells affinity. min aff designates the affinity of B-cells minima

value. max aff designates the B-cells maxima value.

Step 6

Somatic Hypermutation Phase: Calculating the number of mutations is key for AIS all through the given

optimization process, which is an essential event in the enhanced binary AIS. The somatic hypermutation core

impetus involves enhancing the B-cells to accomplish a specific feasible solution. According to De Castro and

Von Zuben [25], a specific mechanism of the selective pressure optimizes the B-cells ability (the output weight)

in obtaining the most optimum affinity. The rate of the somatic hypermutation is conversely proportional to cell

affinity, whereby the higher affinity the cell receptor possesses with an antigen, the lower the mutation rate will be

or vice versa. By using such a strategy, the immune system can keep in hand the higher-affinity offspring cells, as

well as ensuring larger mutations for the lower-affinity ones so that more efficient affinity cells are provided [26].

Accordingly, the given mutation formula number has been presented by Layeb et al. [23] in this equation:

(1
1

0.01)i iNM aff N af fN
NN

= ´ + - ´ (17)

NM is the given Number of the specified Mutation, NN designates the neuron’s number, iaffN designates

normalizing the B-cells affinity (the output weights). After that, produce a new B-cells solution (
new

iw) according

to this equation:

()
*

5,5 , (0,1)

, (0,1)

new
i

i

rand rand r
w

w rand r

 − 
= 



 (18)

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2596

whereby
new
iw designates the novel B-cell in case [0,1]r . After that, the B-cells new generation affinity is

calculated.

Step 7

Termination Phase: When the condition of termination is achieved,

()new
i if w y tolerance£- (19)

Stop, then the ideal B-cells (the ideal output weights) is memorized, otherwise the algorithm will go back to

the second phase. The given tolerance value designates termination or the stopping criterion, therefore, we choose

0.001 for the analysis to decrease the statistical error [24].

6. Experimental setup

All the introduced RBFNN-2SAT model has been utilized in Microsoft Visual Dev C++ software, along with

Microsoft Window 7, in 64-bit, the specification of 500 GB hard drive, and 4096 MB RAM, in addition to 3.40

GHz processor. The simulated data sets have been randomly obtained by generating the input data. The data

selection has reduced any possible data bias, covering more wide-ranging search space. The NN , i.e., the utilized

number of the neurons in the experiment, varied between 6 108NN  .

7. Results and discussion

For a fair assessment of AIS performance when it is applied to the training RBFNN-2SAT, several experimental

tests are performed, and a comparison is conducted with the remaining algorithms. Radial Basis Function Neural

Network 2SAT has been compared with the untrained (i.e., RBFNN-2SATNT), and Radial Basis Function Neural

Network 2SAT with the half-trained (i.e., RBFNN-2SATHT), as well as Radial Basis Function Neural Network

2SAT with the genetic algorithm (i.e., RBFNN-2SATGA), in addition to Radial Basis Function Neural Network

2SAT with the artificial immune system algorithm (i.e., RBFNN-2SATAIS). Hamadneh and Sathasivam [27] use

one metric to evaluate the performance of trained RBFNN with Satisfiability logic programming using different

algorithms called Mean Squares Error (MSE). In this paper used four performance metrics are calculating their

respective process time (Computation time in seconds), Schwarz Bayesian Criterion (SBC), Mean Square Error

(MSE), as well as Root Mean Square Error (RMSE) as in this equation:

()
2

1

1
()

n

AIS i i

i

RMSE y
n

f w
=

= − (20)

ln() ln()SBC n MSE pa n= + (21)

whereby pa signifies the centers’ number, the widths, as well as output weights. n signifies the target data’s

number. Mean square error (MSE) is defined as:

()
2

1

()
n

AIS i i

i

y

MSE
n

f w
=

−

=


 (22)

where ()AIS if w signifies the value of the actual output, iy signifies the value of the target output, n signifies

the number of the target data.

The CPU time represents the needed time by the RBFNN-2SAT models to complete a single execution. It

involves the ability, as well as the stability of RBFNN-2SAT models.

CPU time TreaningTime TestingTime= +
 (23)

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2597

Figure 1. MSE value of the entire models of RBFNN-2SAT

Figure 2. RMSE value of the entire models of RBFNN-2SAT

Figure 3. SBC value of the entire models of RBFNN-2SAT

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2598

Figure 4. CPU time (seconds) models of RBFNN-2SAT

The aim of the 2SAT logical rule, in this work, is to perform much better in the neural network compared to

other forms of SAT such as HornSAT [28] and generalized kSAT [12, 18], Random SAT [29] and Maximum SAT

[3]. This can be attributed to the variation of the variables number in each of the clauses, which has caused RBFNN

to alter the hidden layer’s dimension. The imbalanced signal of the hidden layer towards the output later has led to

the imbalanced value of the parameters (the center, as well as the width) and the high computation error. Thus, the

results of RBFNN-2SATNT, RBFNN-2SATHT, RBFNN-2SATGA, as well as RBFNN-2SATAIS are illustrated

in summary from Figure 1 until Figure 4. The results in Figure 1 until 4 showed the following findings:

1. RBFNN-2SAT is capable of receiving further input data with a fixed value of the center and the width.

RBFNN-2SATAIS, herein, can create a specific model that is capable of classifying data depending upon the 2SAT

logical rule using the RMSE, the SBC, and the CPU time minimum value.

2. RBFNN-2SATAIS achieved the best performance in relation to errors when the number of the neurons

increased owing to the features, which made the AIS algorithm more superior compared to other methods as the

AIS significant features are recognition, variation, memory, distributed perception, learning, in addition to self-

organizing.

3. RBFNN-2SATAIS achieved the most optimum performance with regard to the Schwarz Bayesian Criterion

(SBC) because of the increased number of neurons. Based on Hamadneh et al. [19], the SBC lowest value refers

to the most optimum model. Due to MSE has a positive correlation to SBC, the fact that lower MSE will result in

a lower value of SBC.

4. Regarding the computation time, RBFNN-2SATAIS has been faster compared with other models of

RBFNN-2SAT. At NN > 20, the RBFNN-2SATNT possibility, as well as the RBFNN-2SATHT, which were

trapped in the state of the trial and error, has increased, which has led the RBFNN-2SATNT to complete pre-

mature convergence.

5. RBFNN-2SATGA, nonetheless, has slightly higher learning error because of ineffective and initial

crossover. It took the RBFNN-2SATGA several iterations to be capable of producing the output weight, which is

high-quality; mutation is the effective operator only during this time. However, when the suboptimal output weight

has been a floating number, this has worsened the problem. In GA, novel generations were produced in GA by

means of reproducing, whereas in AIS novel generations were generated via cloning and, thereby, the search

agents’ number in AIS was far from constant as the cloning operations increased it. The search agents in GA,

however, were constant. Thus, the AIS clone and clones have moved to neighboring nodes. The search field in

GA, however, includes all population.

8. Conclusion

A hybrid paradigm has been proposed in this work, i.e., the AIS algorithm incorporated with a radial basis

function neural network (RBFNN-2SATAIS) in performing random 2SAT logic programming. The proposed

model has been compared with no training method incorporated with radial basis function neural network

(RBFNN-2SATNT), half training method incorporated with the radial basis function neural network (RBFNN-

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2599

2SATHT), as well as a genetic algorithm incorporated with radial basis function neural network (RBFNN-

2SATGA). Based on the results, there is a big difference in the performances of whole paradigms in varied four

terms of the Root Mean Square Error (RMSE), Mean Square Error (MSE), Schwarz Bayesian Criterion (SBC),

and process time (i.e., computation time in seconds). Moreover, based on the experimental results, the introduced

paradigm has provided a lower SBC, a RMSE and MSE lower value error, and faster computation time compared

with RBFNN-2SATNT, RBFNN-2SATHT, and RBFNN-2SATGA. Hence, RBFNN-2SATAIS was

unequivocally found to be more efficient compare with RBFNN-2SATGA or any other method as RBFNN-

2SATNT and RBFNN-2SATHT in certain aspects, including more efficiently reduced error, lower Schwarz

Bayesian Criterion (SBC), and faster time of processing in executing 2SAT logic programming. For further studies,

RBFNN2SATAIS can be utilized to solve traditional optimization methods like the travelling salesman, as well as

the N-queen’s problem.

9. Acknowledgment

The present research has been supported by the Research University Grant (RUI) (1001/PMATHS/8011131)

provided by Universiti Sains Malaysia.

References

1. Z. Li, G. He, M. Li, L. Ma, Q. Chen, J. Huang, J. Cao, S. Feng, H. Gao, and S. Wang, RBF neural network

based RFID indoor localization method using artificial immune system, In 2018 Chinese Control And

Decision Conference (CCDC) (2018, June) (pp. 2837-2842).

2. H. de Leon-Delgado, R. J. Praga-Alejo, D. S. Gonzalez-Gonzalez, and M. Cantú-Sifuentes, Multivariate

statistical inference in a radial basis function neural network, Expert Systems with Applications, 93

(2018), pp. 313-321.

3. M. A. Mansor, M. S. M. Kasihmuddin, and S. Sathasivam, Artificial Immune System Paradigm in the

Hopfield Network for 3-Satisfiability Problem, Pertanika Journal of Science & Technology, 25(4)

(2017).

4. N. Hamadneh, Logic Programming in Radial Basis Function Neural Networks, Ph.D. diss., Universiti

Sains Malaysia, 2013.

5. H. V. H. Ayala, and L. dos Santos Coelho, Cascaded evolutionary algorithm for nonlinear system

identification based on correlation functions and radial basis functions neural networks, Mechanical

Systems and Signal Processing, 68 (2016), pp. 378-393.

6. D. Dasgupta (Ed.), Artificial immune systems and their applications, Springer Science & Business Media,

2012.

7. L. N. Castro, L. N. De Castro, and J. Timmis, Artificial immune systems: a new computational

intelligence approach. Springer Science & Business Media, 2002.

8. J. E. Hunt, and D. E. Cooke, Learning using an artificial immune syste,. Journal of network and computer

applications, 19(2) (1996), pp. 189-212.

9. S. Valarmathy, and R. Ramani, Evaluating the Efficiency of Radial Basis Function Classifier with

Different Feature Selection for Identifying Dementia, Journal of Computational and Theoretical

Nanoscience, 16(2) (2019), pp. 627-632.

10. N. Hamadneh, S. Sathasivam, S. L. Tilahun, and O. H. Choon, Learning logic programming in radial

basis function network via genetic algorithm, Journal of Applied Sciences(Faisalabad), 12(9) (2012), pp.

840-847.

11. S. Sathasivam, N. Hamadneh, & O. H. Choon, Comparing neural networks: Hopfield network and RBF

network, Applied Mathematical Sciences, 5(69) (2011), pp. 3439-3452.

12. M. S. M. Kasihmuddin, M. A. Mansor, and S. Sathasivam, Artificial Bee Colony in the Hopfield Network

for Maximum k-Satisfiability Problem, Journal of Informatics and Mathematical Sciences, 8(5) (2016),

pp.317-334.

13. R. Miyashiro, and T. Matsui, A polynomial-time algorithm to find an equitable home–away

assignment, Operations Research Letters, 33(3) (2005), pp. 235-241.

14. S. Even, A. Itai, and A. Shamir, On the complexity of time table and multi-commodity flow problems,

In 16th Annual Symposium on Foundations of Computer Science (sfcs 1975) (1975, October), pp. 184-

193. IEEE.

15. S. Mukherjee, and S. Roy, Multi terminal net routing for island style FPGAs using nearly-2-SAT

computation, In VLSI Design and Test (VDAT), 2015 19th International Symposium on IEEE, 2015, pp.

1-6. IEEE.

16. J. Moody, and C. J. Darken, Fast learning in networks of locally-tuned processing units. Neural

computation, 1(2) (1989), pp. 281-294.

Turkish Journal of Computer and Mathematics Education Vol.12 No.12 (2021), 2591-2600

 Research Article

2600

17. A. Idri, A. Zakrani, and A. Zahi, Design of radial basis function neural networks for software effort

estimation, IJCSI International Journal of Computer Science Issues, 7(4). journal of intelligent systems,

7(6) (2010), pp.513–519

18. N. Hamadneh, S. Sathasivam, Solving Satisfiability Logic Programming Using Radial Basis Function

Neural Networks, Journal of Engineering and Applied Sciences, 1(4) (2017), pp. 1-7.

19. M. S. M. Kasihmuddin, M. A. Mansor, and S. Sathasivam, Hybrid Genetic Algorithm in the Hopfield

Network for Logic Satisfiability Problem, Pertanika Journal of Science & Technology, 25(1) (2017).

20. W. A. T. W. Abdullah, Logic programming on a neural network, International journal of intelligent

systems, 7(6) (1992), pp. 513-519.

21. L. N. De Castro, and F. J. Von Zuben, Artificial immune systems: Part II–A survey of applications,

FEEC/Univ. Campinas, Campinas, Brazil, 2000.

22. A. Layeb, A clonal selection algorithm based tabu search for satisfiability problems. Journal of Advances

in Information Technology, 3(2) (2012), pp. 138-146.

23. A. Layeb, H. Deneche and S. Meshoul, A new artificial immune system for solving the maximum

satisfiability problem, in International Conference on Industrial, Engineering and Other Applications of

Applied Intelligent Systems, pp. 136-142, 2010, June.

24. M. A. Mansor, M. S. M. Kasihmuddin, and S. Sathasivam, Modified Artificial Immune System Algorithm

with Elliot Hopfield Neural Network For 3-Satisfiability Programming, Journal of Informatics and

Mathematical Sciences, 11(1) (2019), pp. 81-98.

25. L. N. De Castro, and F. J. Von Zuben, Immune and neural network models: theoretical and empirical

comparisons, International Journal of Computational Intelligence and Applications, 1(03) (2001), pp.

239-257.

26. J. Timmis, and M. Neal, A resource limited artificial immune system for data analysis, In Research and

Development in Intelligent Systems XVII (2001) (pp. 19-32). Springer, London.

27. N. Hamadneh, S. Sathasivam, S. L. Tilahun, and O. H. Choon, Satisfiability of logic programming based

on radial basis function neural networks. In AIP Conference Proceedings (Vol. 1605, No. 1, pp. 547-550),

AIP, (2014, July).

28. S. Sathasivam, Upgrading logic programming in hopfield network, Sains Malaysiana, 39(1) (2010), pp.

115–118.

29. C. Caleiro, F. Casal, and A. Mordido, Generalized probabilistic satisfiability and applications to

modelling attackers with side-channel capabilities, Theoretical Computer Science, 2019.

