
Turkish Journal of Computer and Mathematics Education

__
3800

Research Article

Vol.12 No.6 (2021), 3800-3802

BCD Addition without Carry Propagation

Sukrith B

A. Sreekumar

Cochin

Article History: Received: 10 November 2020; Revised 12 January 2021 Accepted: 27 January 2021;

Published online: 5 April 2021

__
Abstract: Binary Coded Decimal addition is less used due to the computational overhead pertaining to it. We

propose an algorithm to reduce the computational overhead caused by removing carry propagation time delay by

doing a prefixed set of instructions for a block of 64-bit digits, speeding up the computation up by four times in

the ideal case.

Keywords: BCD Addition, Algorithm Complexity, Computer arithmetic, Algorithm Adder.

__

1. Introduction

Binary Coded Decimal (BCD) numbers are usually represented in a byte (8 bit). There is also a packed BCD

concept where a digit is stored as a nibble (4 bits). Results of the addition of any two BCD digits require the

additional overhead of adding by six if the resultant digit is greater than 910 (Liu, 1986). Packed BCD requires an

extra bit for Carry Flag (CF) to detect the incoming carry. Hence, the actual number of bits becomes five per digit.

The addition of large numbers requires propagation of this carry and the delay caused by it. To mitigate the

requirement of CF an algorithm used by Michael Wiedeking of MATHEMA Software GMBH reduces eight-bit

processing to seven bits, thus reserving the MSB (Most Significant Bit) for carry (Jonas, 1999). Thus, reducing

carry propagation but does not incorporate incoming or outgoing carry. The proposed algorithm is more

straightforward and incorporates the incoming and outgoing carry; therefore could be utilised in various scenarios.

BCD is preferable because it is in human-readable format, and ease of conversion prevail in computing and

electronic communications (O. Al-Khaleel, 2011). But the additional overhead of the correction mechanism

curtails the widespread usage of BCD. Many error correction methods and carry chain optimisation by (M.

Vazquez, 2009) are used in hardware implementation to reduce computational time and complexity. The pre-

processing method of correction is proposed by (Z. T. Sworna, 2016), but these operations cause much delay,

whereas more research works are on post-process processing when output exceeds 910 (Haque, 2018).

2.Proposed Method

Addition using a packed BCD format has its nuances. If a digit-wise addition generates a carry, it falls to the LSB

(Least Significant Bit) of high order digit. Hence carry should be stored separately to avoid interfering with the

higher-order digit. Storing and then processing each digit that is nibble by nibble will consume unnecessary waiting

of resources.

The proposed algorithm mitigates the waiting of propagating carry created by digit-wise addition. Here numbers

are represented as unsigned integers in packed BCD format of 64-bit size, say A and B. Thus, addition operates

block-wise with the size of 64-bit, that is, 16 digits at a time. This algorithm can be used for any number of digits

packed in this format by considering it as a block sequence. Adding each block requires an input and output

parameter, namely, carry from the previous block of digits and carry generated by the current block-addition.

Leading blocks should be added with CF = FALSE. Algorithm 2 explains this process with an example illustrated

in table 2.

2.1. Block-wise Addition

BCD Addition without Carry Propagation

__

__
3801

Initially, a (CF) from low order block is observed and if true A is incremented by one. Then we compute Generated

Carry, GC = ~(A B). In GC, the LSB of each digit is only of our concern. This is to check even parity of

corresponding digits of the sum of A and B.

New A is computed by incrementing it by six and B digit-wise (line 6 of algorithm 1). It will produce carry exactly

when decimal addition of two operands would develop a carry (Jonas, 1999). A hindrance to this procedure is that

there will be an excess of six in all digits that does not generate a carry, whereas the digits that produced a carry

will have the correct value.

Table 1. Algorithm 1, Example.

A input 7 9 8 4 1 4 6 3 7 3 8 1 1 3 5 9

B input 3 8 2 4 8 5 3 4 2 6 2 2 8 6 4 8

GC line 4 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

A line 5 1 8 0 E F F F E 0 0 0 A 0 0 0 7

GC line 6 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1

Turkish Journal of Computer and Mathematics Education

__
3802

Research Article

Vol.12 No.6 (2021), 3800-3802

GC line 8 0 0 0 6 6 6 6 6 0 0 0 6 0 0 0 0

A line 15 1 8 0 8 9 9 9 8 0 0 0 4 0 0 0 7

Hence, GC is again computed by GC A to find the positions where carry is not generated and is then reduced

by six in each of these positions, thus getting the required result. We then compare the outcome with any of the

operands, and if it’s of lesser value, then CF holds TRUE, else FALSE. Instead, CF could be set as TRUE or

FALSE after the above operation by observing the Carry Flag register.

Table 2. Algorithm 2, Example.

A input 9999999999999999 1234567890123456 8546215647826546

B input 8765432109876543 2354875468245123

Sum line 5 0000000000000000 0901091116071669

R line 10 9999999999999999

Sum line 13 0000000000000000 0000000000000000 0901091116071669

Sum line 15 1 0000000000000000 0000000000000000 0901091116071669

3. Conclusion

The proposed algorithm mitigates the delay caused by carry propagation and utilizes the complete 64 bit each time.

As there are no loops in it, it could be implemented easily in hardware platforms as well as parallelize in a multi-

core architecture. The algorithm proposed here is considering a single-core 64-bit processor, but the algorithm

could be scaled to the availability of the resources. In the ideal case, we can gain speed up to four times.

My Appendix
notation Meaning

 XOR operator

shiftright4 shift right the operand 4 times

A B assigns the value of B to A

~A Negation

| OR operator

A.len length of number A

References

[1]. Haque, M. U. (2018). A fast fpga-based bcd adder. Circuits, Systems, and Signal Processing, 4384--4408.

[2]. Jonas, D. W. (1999). BCD Arithmetic a tutorial. Retrieved from The Arithmetic tutorial collection:

http://homepage.divms.uiowa.edu/~jones/bcd/bcd.html#packed

[3]. Liu, Y.-C. a. (1986). Microcomputer systems: the 8086/8088 family architecture, programming and

design. Prentice Hall, Inc., Old Tappan, NJ.

[4]. M. Vazquez, G. S. (2009). Decimal Adders/Subtractors in FPGA: Efficient 6-input LUT

Implementations. International Conference on Reconfigurable Computing and FPGAs, (pp. 42-47).

[5]. O. Al-Khaleel, M. A.-K.-Q. (2011). Fast binary/decimal adder/subtractor with a novel correction-free

BCD addition. 2011 18th IEEE International Conference on Electronics, Circuits, and Systems, (pp. 455-

459).

[6]. Z. T. Sworna, M. U. (2016). Low-power and area efficient binary coded decimal adder design using a

look up table-based field programmable gate array. IET Circuits, Devices Systems, 10(3), 163-172.

