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Abstract: In this paper, we investigate the fuzzy aspects of split exact sequences, projective-injective and semi simple 

modules, theoretical results connecting them are supported by appropriate examples. Remarkable equivalence conditions are 

established to unveil the evenness of fuzzy projective-injective modules over semi simple rings. Also, towards the conclusion 

we have developed a procedure to compute injective dimension of a fuzzy module based on the possible length of injective 

resolution and illustrate its working by means of an example. 
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1. Introduction and Review of Related Studies 

 Projective and Injective Modules were first explored by (Cartan & Eilenberg 1956). Trailing the same, 

research done in the area resulted in topical concepts like pseudo projective-injective modules, psuedo semi-

projective modules, small psuedo projective modules, M - injective modules and many more. In 1972 concept of 

finite Goldie dimension in modules (Goldie.A.W.1972) drew the attention of researchers like (Satyanarayana.B. 

et al.,2006) and (Yenumula & Satyanarayana 1987). Some work on projective dimension over various interesting 

rings for example Weyl algebra, polynomial ring and Laurent polynomial ring have been studied and analyzed in 

(Greuel & Pfister 2008), (Mishra.R.K. et al.,2011) and (Vargas.J.G.2003).  From 1965 onwards various algebraic 

structures were fuzzified, when the critically vital concept ―fuzzy‖ came into existence. Concepts like fuzzy 

projective – injective modules, fuzzy G-modules injectivity and quasi injectivity of fuzzy G-modules came into 

picture ensuing the above. Then (Michielsen.J. 2008) defined simple and semi-simple modules. And here in this 

paper we have studied and explored few of the concepts mentioned above in their fuzzy context and analyzed 

their relations with semi simple fuzzy modules and split exact sequences. Also, towards the end an interesting 

theorem is discussed showing the evenness of both fuzzy projective and injective modules over semi simple 

rings. 

 Also, the current study can be used to characterize global dimension of a ring in terms of projective-

injective dimension of fuzzy modules, which can be extended from rings to internally graded rings. Authors also 

encourages the readers to study fuzzy modules over semi simple lie algebras which plays central role in many 

fields of mathematics and can give novel contributions in the field of differential geometry. 

2.Significance of the study  

In this paper apart from analysing the fuzzy version of split exact sequences, projective-injective and 

semi simple modules, their evenness is proved over semi simple rings as one of the substantial results of the 

paper, same is supported with suitable examples. Also, we have developed a procedure to calculate injective 

dimension of a fuzzy module and illustrated its working by means of an example. Study done here can further be 
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extended to finite Gorenstein injective dimension and can be used to establish fuzzy version of Bass formula 

which associates the injective dimension to the depth of the module. Using this, global dimension of a ring in 

terms of projective-injective dimension of fuzzy modules can also be characterized, which can then be extended 

from rings to internally graded rings. 

3.Objectives of the study 

 To investigate and analyse the fuzzy aspects of split exact sequences, projective-injective and semi 

simple modules where in the theoretical results are supported by appropriate examples.  

 To establish remarkable equivalence conditions to unveil the evenness of fuzzy projective-injective 

modules over semi simple rings.  

 To calculate injective dimension of a fuzzy module and illustrated its working by means of an example. 

 

4.Preliminaries 

The basic definitions and elementary results used in the paper are detailed below. 

Terminology and Symbols: Used throughout this paper: 

 R is a ring with identity. 

 Each module mentioned is a unitary R-module where R𝑀 and 𝑀R denote the left and right R – modules, 

respectively. 

 𝜇𝑀 means fuzzy module over the module 𝑀. 

 pd(𝑀) is projective dimension of the module 𝑀. 

 id(𝑀) is injective dimension of the module 𝑀. 

 ∈ Means belongs to. 

Definition 4.1[(Kumar, Bhambri, Pratibha, 1995)]: A fuzzy subset 𝜇𝑀is called fuzzy submodule of module 𝑀 if 

the following conditions are satisfied: 

(i) 𝜇(𝑚 + 𝑛) ≥ {𝜇(𝑚), 𝜇(𝑛)} for all 𝑚, 𝑛 ∈ 𝑀 

(ii) 𝜇(𝑥𝑚) ≥ 𝜇(𝑚) for all 𝑚 ∈ 𝑀 and 𝑥 ∈ R 

(iii) 𝜇(-𝑥) = 𝜇(𝑥) for all 𝑥 ∈ 𝑀 

(iv) 𝜇(0) = 1 

  

Definition 4.2[(Liu, 2014)]: For two fuzzy R-modules 𝜇𝐴 and ν𝐵 . A function 𝑓    : 𝜇𝐴 → ν𝐵  is called fuzzy R– 

homomorphism if: 

(i) 𝑓 is a R-homomorphism 

(ii) ν(𝑓(a)) ≥ 𝜇(a) for all a ∈ A. 

 

Definition 4.3[(Liu, 2014)]: A fuzzy R-module 𝜇𝑃is called projective if and only if for every surjective fuzzy R-

homomorphism 𝑓    : 𝜇𝐴 → 𝜇𝐵 and for every fuzzy R-homomorphism 𝑔 : 𝜇𝑃 → 𝜇𝐵 there exist a fuzzy R-

homomorphism𝑕 :𝜇𝑃 → 𝜇𝐴  such that figure 1 

 
   Figure1.Fuzzy projective module 

Commutes that is, 𝑓  𝑕 = 𝑔 . 
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Definition 4.4[(Liu, 2014)]: A fuzzy R-module 𝜇𝑃 is called injective if and only if for every injective fuzzy R-

homomorphism 𝑓    : 𝜇𝐵 → 𝜇𝐴  and for every fuzzy R-homomorphism 𝑔    : 𝜇𝐴 → 𝜇𝑃 there exist a fuzzy R-

homomorphism𝑕 : 𝜇𝐵 → 𝜇𝑃such that figure 2 

 
                                                            Figure2. Fuzzy injective module 

Commutes that is, 𝑔 𝑓  = 𝑕 . 

Definition 4.5[(Pan, 1987)]: A fuzzy R-homomorphism 𝑓 ∈ Hom (𝜇𝐴, ν𝐵) is called fuzzy split if there exist 

some 

𝑔 ∈ Hom (ν𝐵 , 𝜇𝐴) such that 𝑓 𝑔  =1 𝐵 . 

Definition 4.6[(Zahedi, Ameri, 1995)]: The sequence… . → μ𝑛−1𝜆𝑛−1

 𝑓𝑛−1  
      𝜇𝑛𝜆𝑛

 𝑓𝑛  
     𝜇𝑛+1𝜆𝑛+1

→ ⋯ of R-

fuzzy module homomorphism is said to be fuzzy exact if and only if Im𝑓 𝑛−1= Ker𝑓𝑛  for all 𝑛, where Im𝑓 𝑛−1 and 

Ker𝑓𝑛  is𝜇𝑛 | Im𝑓𝑛−1 and 𝜇𝑛  | ker𝑓𝑛  which means 𝜇𝑛 is restricted to image and kernel respectively. 

Definition 4.7[(Zahedi, Ameri, 1995)]: A fuzzy exact sequence of the form 0 → 𝜇𝐴

𝑓
→ 𝜂𝐵

𝑔
→ ν𝐶 → 0 is called 

fuzzy short exact sequence. 

Definition 4.8[(Isaac, 2004)]:𝜇𝑀is said to be simple fuzzy left module if it has no proper sub modules. 

Definition 4.9[(Isaac, 2004)]: 𝜇𝑀is said to be semi-simple fuzzy left module if whenever for ν𝑁 , a strictly proper 

fuzzy submodule of 𝜇𝑀there exist a strictly proper fuzzy submodule 𝜂𝑃of 𝜇𝑀  such that  𝜇𝑀= ν𝑁  𝜂𝑃. 

NOTE: A ring is said to be semi-simple if, every left-module over it is semi-simple.  

Definition 4.10[(Liu, 2014)]: If 𝑀 is R-module, 0𝑀 represents the fuzzy R-module 0 : 𝑀 → [0, 1] satisfyin 

0(𝑥) =      0 if 𝑥 ≠ 0 

            1 if 𝑥 = 0 

Definition 4.11[(Satyanarayana, Godloza., Mohiddin, 2004)]: Let 𝑀 is a module and 𝜇𝑀is a fuzzy submodule of 

𝑀. Let 𝑥1, 𝑥2,....,𝑥𝑛 ∈ 𝑀 are said to be fuzzy linearly independent with respect to 𝜇𝑀if it satisfies the following 

two conditions: 

(i) 𝑥1, 𝑥2,....,𝑥𝑛  are linearly independent and 

(ii) 𝜇(𝑦1, 𝑦2,....,𝑦𝑛 ) = min{𝜇(𝑦1) ...., 𝜇(𝑦𝑛 )} for any 𝜇(𝑦𝑖 ) ∈ R𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛. 

 

Definition 4.12[(Satyanarayana, Godloza., Mohiddin, 2004)]: Let 𝜇𝑀is a fuzzy submodule of 𝑀. A subset 𝐵 of 

𝑀 is said to be a fuzzy pseudo basis for 𝜇𝑀  if 𝐵 is a maximal subset of 𝑀 such that 𝑥1, 𝑥2,....,𝑥𝑘are fuzzy 

linearly independent for any finite subset {𝑥1, 𝑥2,....,𝑥𝑘} of 𝐵. 

Definition 4.13[(Satyanarayana, Godloza., Mohiddin, 2004)]: The fuzzy pseudo basis of 𝜇 is called as fuzzy 

basis for 𝑀.  

Definition 4.14[(Pan, Fu-Zheng1988)]: For an arbitrary fuzzy linear map 𝑓 : 𝜇𝑀 → ν𝐴 ,  𝜇𝑆where 𝑆 = {𝑚 ∈ 𝑀 

: 𝜈(𝑓(𝑚)) = 1} is called the kernel of 𝑓 . 

Lemma 4.15[(Mishra, Kumar, Behara, 2011)]: Let 𝑀1,  𝑀2,  𝑀3 be R-modules and 

0 → 𝑀1

 𝛼1  
     𝑀2

 𝛼2  
     𝑀3 → 0 be a split short exact sequence. Suppose𝛽1and 𝛽2is the splitting corresponding to 

𝛼1 and 𝛼2 respectively. Then the following sequence is an exact sequence0 → 𝑀3

 𝛽2  
     𝑀2

 𝛽1  
     𝑀1 → 0. 
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Example 4.16[(Zahedi, Ameri, 1995] [Example 2.6]: Let 𝑓 : 𝜇𝑀 → 𝜂𝑁  be a fuzzy homomorphism. Then the 

fuzzy sequence 0 → 𝑘𝑒𝑟𝑓 
𝑖 
→ 𝜇𝑀

𝑓 

→𝜂𝑁

𝑔 
→ 𝑐𝑜𝑘𝑒𝑟𝑓 → 0 is exact where 𝑖  is inclusion map and 𝑔  is canonical map. 

Lemma 4.17 [(Zahedi, Ameri, 1995)] [Lemma 2.11]: Let 𝑔 ′:𝜂𝐶 → 𝜌𝐵be a fuzzy splitting for the fuzzy short 

exact sequence 0 → 𝜇𝐴

𝑓 

→ 𝜌𝐵

𝑔 
→ 𝜂𝐶 → 0 of fuzzy R-modules. Then 𝜌𝐵 ≅  𝜇𝐴  𝜂𝐶 . 

Theorem 4.18[(Zahedi, Ameri, 1995)] [Theorem 3.8]: Let 𝜇𝐼is fuzzy R- module then the following conditions 

are equivalent: 

(i)  𝜇𝐼 is injective 

(ii) For each fuzzy short exact sequence 0 → 𝜌𝐴

𝑓 

→ 𝜂𝐵

𝑔 
→ 𝜃𝐶 → 0  

 The induced sequence 0 → homR(𝜃𝐶 ,  𝜇𝐼) 
𝑔 ∗
→ homR(𝜂𝐵,  𝜇𝐼)

𝑓 ∗
→ homR(𝜌𝐴,  𝜇𝐼) → 0  is exact. 

(iii) If  𝛽 : 𝜇𝐼 → 𝜌𝐵  is a fuzzy epimorphism then there exists a fuzzy homomorphism 𝛼 : 𝜌𝐵 → 𝜇𝐼 such that 

𝛼 𝛽  = 1 𝐼 

(iv)  𝜇𝐼 is a fuzzy direct summund in every fuzzy module which contains 𝜇𝐼as a submodule. 

 

Theorem 4.19[(Isaac, 2004)]: Let L be a complete distributive lattice. Let 𝜇𝑀  be a fuzzy left module then the 

following are equivalent: 

(i) 𝜇𝑀is semi simple 

(ii) 𝜇𝑀 is a sum of a family of strictly proper simple fuzzy submodules  𝜇𝑖𝑀 of 𝜇𝑀 . 

(iii) 𝜇𝑀is a direct sum of a family of strictly proper simple fuzzy submodules 𝜇𝑖𝑀 of 𝜇𝑀 . 

Theorem 4.20[(Zahedi, Ameri, 1995)] [Theorem 3.3]: Let 𝜂𝑖be the family of fuzzy R-modules. Then the direct 

product Π𝜂𝑖is injective in the category fuzzy R-modules if and only if each 𝜂𝑖  is injective. 

Theorem 4.21[(Isaac, 2004)] [Theorem 5.2.4]: Every free L-module is a projective L-module. 

 

5.Fuzzy projective module 

Let R be a ring and 𝜇𝑀be a fuzzy finitely generated R-module. A fuzzy exact sequence 

… . → 𝜇𝑖+1

 𝑓𝑖+1  
      𝜇𝑖 … . 𝜇1

 𝑓1  
    𝜇0

 𝑓0  
    𝜇𝑀 → 0 with only fuzzy free (resp. projective) modules 𝜇𝑖  

{𝑖 = 0, 1, 2...} is called a free (resp.  projective) resolution of𝜇𝑀 . The minimum length of which, is called as 

projective dimension of 𝜇𝑀. 

Lemma 5.1: Let 𝜃𝑃is fuzzy R-module then the following conditions are equivalent: 

(i) 𝜃𝑃is fuzzy projective 

(ii) Any short exact sequence of the form 0 → 𝜇𝐴

𝑓 

→ 𝜇𝐵

𝑔 
→ 𝜃𝑃 → 0 splits. 

(iii) 𝜃𝑃is a direct summund of a free fuzzy R-module. 

Proof: (i)⇒(ii): Let 0 → 𝜇𝐴

𝑓 

→ 𝜇𝐵

𝑔 
→ 𝜃𝑃 → 0  be an exact sequence, since 𝜃𝑃is fuzzy projective we have 

𝑔′ : 𝜃𝑃 → 𝜇𝐵 in figure 3 such that it commutes. 

 
Figure3. Commutativity is shown forthefuzzy projective module 𝜃𝑃 

Then 𝑔 𝑔 ′ = 1𝜃𝑃
thus, the short exact sequence mentioned splits.  

(ii)⇒(iii): Since any fuzzy submodule is the homomorphic image of free fuzzy submodule, therefore, we have 

short exact sequence 0 → 𝜃′𝑃
𝑓 

→ ν𝐵

𝑔 
→ 𝜃𝑃 → 0 where ν𝐵  is the free fuzzy submodule. If 𝜃𝑃satisfy (ii) then the 

sequence splits and hence ν𝐵 ≅ 𝜃𝑃  𝜃′𝑃  by Lemma 4.17. 
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(iii)⇒(i):0 →  𝜃′𝑃
𝑓 

→ ν𝐵

𝑔 
→ 𝜃𝑃 → 0  where ν𝐵 is free. Now let us consider figure 4 

 
Figure4. For showing the commutativity of the sequence in (ii) 

Combining the given sequence and figure 4 we obtain figure 5 

 
Figure5. Combination of figure 4 and short exact sequence in (ii) 

and since the sequence splits, we have𝑔 ′: 𝜃𝑃 → ν𝐵 such that 𝑔 𝑔 ′= 1𝜃𝑃
. 

Now since ν𝐵 is free, it is projective by theorem 4.21, we can now have 𝑟  : ν𝐵 → 𝜇A which implies  

𝑝 𝑔  = 𝑞 𝑟 . Consider 𝑝 = 𝑝  1𝜃𝑃
 

= 𝑝 𝑔 𝑔 ′ 

= 𝑞  𝑟 𝑔 ′ , where 𝑟 𝑔 ′ : 𝜃𝑃 → 𝜇𝐴 . Hence 𝜃𝑃is fuzzy projective. 

Theorem 5.2: If 𝜇𝑀is fuzzy projective then the fuzzy module  𝜇′𝑀/𝑁  defined on its quotient module 𝑀 𝑁 is also 

fuzzy projective. 

Proof: Letif 𝜇𝑀is fuzzy projective then figure 6 commutes: 

 

Figure6. Showing the commutativity of fuzzy module 𝜇𝑀  

Here𝑓 , 𝑔  and 𝑕 are defined as 𝑓 [𝜇(𝑚)] = 𝜈(𝑚*), 𝑔 [𝜈(𝑚*)] = 𝜓(𝑚*+𝑁*) and 𝑕 [𝜇(𝑚)] = 𝜓(𝑚*+𝑁*) for all 

𝑚 ∈ 𝑀 and 𝑚* ∈ 𝑀* respectively. Now, for showing 𝜇′𝑀/𝑁 to be fuzzy projective we need to show 𝑔 𝑓 ′  = 𝑕 ′ . 

Thus, considering figure 7 for the same. 
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Figure7. Showing the commutativity of fuzzy module𝜇′𝑀/𝑁

 

Where𝜇′ , 𝑓 ′and 𝑕 ′  are defined as 𝜇′ (𝑚+𝑁) = 𝜇(𝑚), 𝑓 ′ [𝜇′(𝑚+𝑁)] = 𝜈(𝑚*) or𝑓 ′ [𝜇(𝑚)]= 𝜈(𝑚*) and 𝑕 ′ [𝜇′ ((𝑚+𝑁)]  

= 𝜓(𝑚*+𝑁*) or 𝑕 ′ [𝜇(𝑚)] = 𝜓(𝑚*+𝑁*). Consider, 𝑔 [𝑓 ′ (𝜇(𝑚))]  

= 𝑔 [𝜈(𝑚*)]  

= 𝜓(𝑚*+𝑁*) 

= 𝑕 ′ [𝜇(𝑚)] hence the result. 

Example 5.3: Let 𝜇, 𝜈 and 𝜓 be the fuzzy modules defined on Q 2, Q 3 and Q 3/Q respectively as 

𝜇(a+b 2 ) =      1, if a, b = 0 

      1/5, if a ≠ 0, b = 0 

      1/6, if b ≠ 0 

 

 

𝜈(a+b 3) =      1, if a, b = 0 

     1/2, if a ≠ 0, b = 0 

     1/3, if b ≠ 0 

 

and 𝜓[(a+b 3)+Q] = 𝜈(a+b 3) for all a, b ∈ Q. Let 𝜇be fuzzy projective then figure 8 commutes, 

 
Figure8. Showing 𝜇 is fuzzy projective 

where 𝑓 , 𝑔  and 𝑕  are 𝑓 [𝜇(a+b 2)] = 𝜈(a+b 3), 𝑔 [𝜈(a+b 3 )] = [𝜓(a+b 3)+Q] and 𝑕 [𝜇(a+b 2)] =  

[𝜓(a+b 3)+Q] respectively. Then to show 𝜇′defined on Q 2/Q as [𝜇′ (a+b 2)+Q] = 𝜇(a+b 2 ) to be fuzzy 

projective we need to show figure 9 commutes: 

 
Figure9. For showing the commutativity of 𝜇′  

Here𝑓 ′[𝜇′ (a+b 2)+Q] = 𝜈(a+b 3)} and 𝑕′ [𝜇′ (a+b 2)+Q] = [𝜓(a+b 3)+Q]. Now 
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𝑔 𝑓 ′[𝜇′ (2+6 2) +Q] = 𝑔 [𝜈(2+6 3)] 

= [𝜓(2+6 3)+Q] 

= 𝑕′ [𝜇′ (2+6 2)+Q]. Hence, the result. 

Example 5.4: Consider, the two fuzzy projective modules of example 5.3. Define a map say 𝜙  : 𝜇𝑀 →

 𝜇′𝑀′where 𝑀 = Q 2 and 𝑀′ = Q 2/Q. Then 𝑘𝑒𝑟𝜙  = [(a+b 2) ∈  𝑀 |𝜇′ (𝜙(𝑚)) = 1] = [(a+b 2) ∈ 𝑀 

|𝜇′ ((a+b) 2+Q) = 1] = [(a+b 2) ∈  𝑀 | 𝜇(a+b 2) = 1]. Which means there is a single element, ``zero" in 

𝑘𝑒𝑟𝜙  [definition of 𝜇 in example 5.3]. Thus, the following chain stops and the projective dimension in this 

specific example is zero. 

 
Figure10. Projective dimension using two fuzzy projective modules 

Remark: From example 5.3 we have 𝑀′ = Q 2/Q. Any subset 𝐵 = {1,  2} of 𝑀′ is the fuzzy pseudo basis for 

𝜇𝑀′since 𝐵 is the maximal subset of 𝑀′. Also 

(i) {1,  2} is the linearly independent and 

(ii) 𝜇(1+ 2)= min [𝜇(1), 𝜇( 2)]  

= min [1/5, 1/6] 

= min [0.2, 0.1]  

which are equal by the definition of 𝜇. Thus, by 4.12 and 4.13 we can say that  

{1,  2} is the fuzzy pseudo basis of  𝜇𝑀′  or fuzzy basis of Q 2/Q. 

 

 

 

6.Fuzzy injective module 

Let R be a ring and 𝜇𝑀  be a fuzzy finitely generated R-module. A fuzzy exact sequence of the form… . →

𝜇𝑖+1

 𝑓𝑖+1  
      𝜇𝑖 … . 𝜇1

 𝑓1  
    𝜇0

 𝑓0  
    𝜇𝑀 → 0 with only fuzzy injective modules𝜇𝑖{𝑖 = 0, 1, 2...} is called a 

injective resolution of  𝜇𝑀 . The minimum length of the same is termed as injective dimension of𝜇𝑀 . 

Theorem 6.1: If  𝜇𝑀  is fuzzy injective then the fuzzy module 𝜇′𝑀/𝑁  defined on its quotient module 𝑀 𝑁  is also 

fuzzy injective. 

Proof: The proof is same as that of theorem 5.2 and can easily be proved by using the definition of fuzzy 

injective module and imposing suitable modifications. 

Example 6.2: Let 𝜇, 𝜈 and 𝜂 be the fuzzy modules defined on Q 3, Q 2 and Q 2/Q as  

𝜇(a+b 3) =     1, if a, b = 0 

    1/2, if a ≠ 0, b = 0 

     1/3, if b ≠ 0 

 

𝜈(a+b 2) =      1/4, if a, b = 0 

     1/5, if a ≠ 0, b = 0 

     1/6, if b ≠ 0 

and 𝜂[(a+b 2)+Q] = 𝜈(a+b 2) respectively. Let 𝜇 be fuzzy injective then figure 11 commutes: 
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Figure11. Showcasing thefuzzy injectivity of 𝜇 

where 𝑓 , 𝑕 and 𝑔  are 𝑓 [𝜈(a+b 2)] = 𝜂[(a+b 2)+Q] = 𝜈(a+b 2) , 𝑔 [𝜈(a+b 2)] = 𝜇(a+b 3) and 𝑕 [𝜂[(a+b 

 2)+Q] = 𝜇(a+b 3) respectively. Then for showing 𝜇′defined on Q 3/Q as [𝜇′ (a+b 3)+Q] = 𝜇(a+b 3) 

to be fuzzy injective, we need to show commutativity in figure 12: 

 

 
Figure12. For showing the commutativity of 𝜇′  

Here𝑔 ′[𝜈(a+b 2)] = 𝜇′[(a+b 3)+Q] and 𝑕′ [𝜂(a+b 2)+Q] = 𝜇′[(a+b 3)+Q]. 

Consider 𝑕′ 𝑓 [𝜈(6+2 2)] = 𝑕 ′[𝜂(6+2 2) +Q] 

= 𝜇′(6+2 3)+Q 

= 𝜇(6+2 3). Also, 𝑔′ [𝜈(6+2 2)] = [𝜇′(6+2 3)+Q] = 𝜇(6+2 3) and hence the result. 

Lemma 6.3: Let 𝜃𝑃is fuzzy R- module then the following conditions are equivalent: 

(i) 𝜃𝑃 is fuzzy injective 

(ii) Any short exact sequence of the form 0 → 𝜃𝑃

𝑓 

→  𝜇𝐵

𝑔 
→  𝜇𝐴 → 0  splits. 

(iii) 𝜃𝑃 is a direct summund of a fuzzy R-module of which it is a submodule. 

Proof: (i) ⇒ (ii): Let 0 → 𝜃𝑃

𝑓 

→  𝜇𝐵

𝑔 
→  𝜇𝐴 → 0  be an exact sequence and since 𝜃𝑃 is fuzzy injective there exist 𝑓′  

:  𝜇𝐵 → 𝜃𝑃 such that figure 13 commutes. 

 

 
Figure13. Using equation in (ii), showing the fuzzy injectivity of 𝜃𝑃 

Thus𝑓 𝑓′  = 1𝜃𝑃
that is, the short exact sequence mentioned in part (ii) splits.  

(ii) ⇒ (iii): Let 𝜃𝑃 be a fuzzy submodule of say 𝜇𝐵 and 𝑓  : 𝜃𝑃 → 𝜇𝐵be a fuzzy homomorphism. Since the 

sequence mentioned in (part (ii)) splits, by example 2.16 we have the sequence 𝜃𝑃

𝑓 

→  𝜇𝐵

𝑔 
→  𝑐𝑜𝑘𝑒𝑟𝑓  as short 

exact. Thus, by lemma 4.17 we have 𝜇𝐵 ≅ 𝜃𝑃 ⊕ 𝑐𝑜𝑘𝑒𝑟𝑓 . 

(iii) ⇒ (i): can trivially be derived from theorem 4.18. 

Lemma 6.4: Let  𝜇1, 𝜂,  𝜇2 be the fuzzy R- modules over 𝑀1, 𝑀2, 𝑀3respectively and 

0 → 𝜇1

 𝛼1  
     𝜂

 𝛼2  
     𝜇2 → 0. Be a fuzzy split short exact sequence. Suppose 𝛽 1 and 𝛽 2are the fuzzy splitting 

corresponding to𝛼 1and 𝛼 2 respectively, then the following sequence is fuzzy exact sequence 

0 → 𝜇2

 𝛽2  
     𝜂

 𝛽1  
     𝜇1 → 0.                                                       . 
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Proof: For the above we need to prove Im𝛽 2= ker𝛽 1. Since Im𝛽 2 = 𝜂|Im𝛽2(𝑥) which is equal to 𝜂(𝑥) for all 𝑥 ∈ 

Im𝛽2. Also, ker𝛽 1= 𝜂| ker𝛽1(𝑦) which equals 𝜂(𝑦) for all 𝑦 ∈ ker𝛽1. Then from Lemma 4.15, we have ker𝛽1= 

Im𝛽2. Therefore, Im𝛽 2= ker𝛽 1implying given sequence is fuzzy exact.  

 

6.5.Procedure for fuzzy injective dimension 

STEP 1- For a given fuzzy injective module 𝜂𝑃 choose a fuzzy injective module 𝜇𝐴and define a fuzzy 

monomorphism map say from 𝜙  :𝜂𝑃 → 𝜇𝐴such that the following is a fuzzy exact 

sequence0 → 𝜂𝑃

 𝜙  
    𝜇𝐴

 𝜓 
    𝑐𝑜 𝑘𝑒𝑟 𝜙 → 0 where 𝑐𝑜𝑘𝑒𝑟 𝜙 = 𝜇𝐴 Im𝜙   

STEP 2- If 𝑐𝑜𝑘𝑒𝑟 𝜙 ≠ 0 then embed it to a new fuzzy injective module generated by the number of elements in 

𝑐𝑜𝑘𝑒𝑟 𝜙  say  𝜇𝐵. Define a map say 𝜙1
     : 𝑐𝑜𝑘𝑒𝑟 𝜙 → 𝜇𝐵implies the following is a fuzzy exact sequence 0 →

𝜂𝑃

 𝜙  
    𝜇𝐴

 𝜓 
    𝑐𝑜 𝑘𝑒𝑟 𝜙

 𝜙 1  
     𝜇𝐵

 𝜓1  
     𝑐𝑜 𝑘𝑒𝑟 𝜙1 → 0. Similarly, again if 𝑐𝑜𝑘𝑒𝑟 𝜙1

    ≠ 0 we have 0 →

𝜂𝑃

 𝜙  
    𝜇𝐴

 𝜓 
    𝑐𝑜 𝑘𝑒𝑟 𝜙

 𝜙 1  
     𝜇𝐵

 𝜓1  
     𝑐𝑜 𝑘𝑒𝑟 𝜙1

 𝜙 2  
     𝜇𝐶

 𝜓2  
     𝑐𝑜 𝑘𝑒𝑟 𝜙2 → 0 as fuzzy exact sequence. 

Continuing the steps, we have  

0 → 𝜂𝑃

 𝛼0  
     𝜇𝐴

 𝛼1  
     𝜇𝐵 . . . . . . .

 𝛼𝑘−1  
       𝜇𝑘−1

 𝛼𝑘  
     𝜇𝑘 → 0              ……. (1) 

STEP3- For 𝑘 = 1 we have 0 → 𝜂𝑃

 𝛼0  
     𝜇𝐴

 𝛼1  
     𝜇𝐵 → 0 ........ (2) 

Since 𝜂𝑃 is fuzzy injective module, equation (2) splits by lemma 6.3. Thus, there exists 𝛽 0:𝜇𝐴 → 𝜂𝑃  such that 

𝛽 0𝛼 0 = 𝐼𝜂𝑃
 . 

STEP 4- From Lemma 6.4 the fuzzy exact sequence in equation (2) splits, giving rise to another exact sequence 

0 → 𝜇𝐵

 𝛽1  
     𝜇𝐴

 𝛽0  
     𝜂𝑃 → 0 implying 𝜇𝐵 ⊕ 𝜂P =  𝜇𝐴 by [Lemma 4.17]. 

Since𝛼0   : 𝜂P→ 𝜇𝐴 is a fuzzy monomorphism we have a fuzzy exact sequence  

0 → 𝜂𝑃

 𝛼0  
     𝜇𝐴

 𝜋 
    𝑐𝑜 𝑘𝑒𝑟 𝛼0 → 0   ……........ (3).  

Here 𝜂𝑃  is fuzzy injective so the above equation (3) splits, implying 𝑐𝑜𝑘𝑒𝑟𝛼 0 = Im𝜋  is fuzzy injective and hence 

id(𝜂P) = 0. 

STEP 5- Suppose 𝜂𝑃  is not fuzzy injective then equation (3) does not split. Therefore 𝑐𝑜𝑘𝑒𝑟𝛼 0  = Im𝜋  is not  

fuzzy injective, continuing in this way all Im𝜋 , Im𝜋 1, Im𝜋 2,.......,Im𝜋 k-1 are not injective but Im𝜋 k-1 will be 

injective. Thus, after finite number of steps id(𝜂𝑃) = 𝑘.  

Example 6.6: Defines a map 𝜙  between two fuzzy injective modules 𝜇𝑀and 𝜇′𝑀/𝑁 of example 6.2. And since, 

this map is surjective in nature, there will be only single element "zero" in the 𝑐𝑜𝑘𝑒𝑟𝑛𝑒𝑙 of 𝜙 . Because of which 

the chain in figure 14 stops and the injection dimension of this specific example will be zero. 

 
Figure14. Injection dimension using two fuzzy injective modules 

 

7.Equivalence of fuzzy projective-injective modules 

In this section along with an example of semi-simple fuzzy module, we extend the concept of equivalence of 

projective and injective modules over semi-simple rings to fuzzy settings. 

Example 7.1:  Let 𝑀 = Q 2 over Q. Then 𝑀 is semi-simple R-module. Here M = Q 2  = Q ⊕  2 Q. Let 𝜇 be 

same as was in example 5.3, that is  

𝜇(a+b 2 ) =1, if a, b = 0 

                         1/5, if a ≠ 0, b = 0 

                         1/6, if b ≠ 0 

Let 𝜇1be defined over Q as 

 𝜇1(𝑥) =     1, if 𝑥 = 0 
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    1/5, if 𝑥 ≠ 0  

And 𝜇2 over Q as  

 

𝜇2(𝑥) =     1, if 𝑥 = 0 

                 1/5, if 𝑥 ≠ 0 

Then both  𝜇1and  𝜇2 are fuzzy modules over Q and  2Q respectively. Also 𝜇 =  𝜇1 ⊕ 𝜇2 thus, 𝜇 is a semi-

simple R-module over M. 

NOTE: The following theorem shows the equivalence of fuzzy projective and fuzzy injective modules. 

Theorem 7.2: For each ring R following properties are equivalent: 

(i) R is semi-simple as a fuzzy left R- module 

(ii) Every fuzzy left ideal of R is a direct summund of R 

(iii) Every fuzzy left ideal of R is fuzzy injective 

(iv) All fuzzy left modules over R are semi-simple 

(v) All fuzzy exact sequences  0 → 𝜇 → 𝜈 → 𝜂 → 0 of fuzzy left R-modules split 

(vi) All the fuzzy left R- modules are fuzzy projective 

(vii) All the fuzzy left R- modules are fuzzy injective 

Proof: Equivalence of (i) - (ii) and (iv) - (v) can trivially be derived from lemma 4.15. (v) - (vi), (v) - (vii) are 

equivalent from lemma 5.1 and 6.3. Thus, (iv) - (vii) are equivalent. The implication (vii) ⇒ (iii) is obvious. If 

the fuzzy left ideal is fuzzy injective then by lemma 6.3 it is a direct summund giving (iii) ⇒ (ii). Finally, since 

we know every fuzzy ideal is fuzzy R-module (ii) ⇒ (vii) is a direct implication of (iv) ⇒ (i) of theorem 4.18. 

Example 7.3: Let 𝜇be a semi simple fuzzy module defined in example 7.1. For it to be fuzzy projective we need 

to show figure 15 commutes: 

 
Figure15. For proving thefuzzy projectivity of 𝜇 

Where 𝜈and 𝜓 are same as were in example 5.3. Consider,𝑔 𝑓 [𝜇(a+b 2)] =𝑔 [ν(a+b 3)]  

= 𝜓[(a+b 3)+Q] =  𝑕 [𝜇(a+b 2)]. Thus, it is fuzzy projective. Also, for it to be fuzzy injective figure 16 must 

commute: 

 
Figure16. For proving thefuzzy injectivity of 𝜇 

we have𝑕 𝑔 [𝜈(a+b 3)] =𝑕 𝜓 [(a+b 3)+Q] = 𝜇(a+b 2) = 𝑓 [𝜈(a+b 3)]. 

 

9. Recommendations 

The present work can further be extended to fuzzy version of Gorenstein injective modules and Ext finite 

modules having finite cosyzygy and finite Gorenstein injective dimension. One can always use local co-

homology to study the fuzzy Gorenstein injective modules over Gorenstein rings, which when developed over 
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local rings can be useful to prove Auslander-Bridger formula. Also, this finite Gorenstein injective dimension 

can be used to establish fuzzy version of Bass formula which associates the injective dimension to the depth of 

the module. 

 

8.Conclusions 

Our contributions to the current research work are: 

(i) We proved the equivalence of fuzzy projective and injective modules over semi simple rings. 

(ii) We have discussed few basic analogues of theorems on fuzzy projective and injective modules, 

motivated by Hilton and Chiang's work in [(Hilton, Wu, 1974)]. 

(iii) We have described the procedure along with an example to find the injective dimension of a fuzzy 

module motivated by the technique discussed in [(Mishra, Kumar, Behara, 2011)].  
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