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Abstract: In recent times, convolutional neural network (CNN) provides improved performance on various image processing 

analysis. This includes classification of images even with redundant information over various imaging application. With such 
aim, in this paper, the hyperspectral images are classified using CNN in spectral domain. The CNN architecture includes five 

different layers enables the classification of data samples by the CNN classifiers and discards redundant information. The 

experimental results test the efficacy of the model, where the results show that the CNN obtains higher classification accuracy 

than other methods. 
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1. Introduction  

Remote sensors are used to collect hyperspectral images (HSI) (Landgrebe, 2002), which are distinguished by 

hundreds of spectral resolution monitoring networks. A variety of conventional classification methods, for 

example nearest neighbors and logistic regression (Foody &Mathur, 2004), were created to benefit from the rich 

spectral knowledge. Any more efficient methods of extraction of functional features and specialized classifiers 

(Tarabalka, Benediktsson&Chanussot, 2009)and Fisher local discrimination analyses (Li, Prasad, Fowler& Bruce, 

2011)have recently been proposed. In current documents, SSM (Melgani&Bruzzone, 2004; Gualtieri & Chettri, 

2000)has been regarded for hyperspectral classification role, particularly in small sample sizes, as a cost-effective 

and stable process. SVM aims to distinguish two-class information that tends to obtain optimal prediction 

hyperplane that better differentiates the workout samples in high-dimensional space with the kernel. In order to 

enhance classification accuracy, some SVM extensions in the hyperspectral image classification have been 

presented (Tarabalka, Benediktsson&Chanussot, 2009; Mountrakis,Im&Ogole, 2011; Li, Bioucas-Dias&Plaza, 

2012). 

The data description of remote sensing is already examined by the Neural Network (NNs), such as Multilayer 

Perceptron (MLP) (Atkinson&Tatnall, 1997; Bruzzone&Prieto, 1999). In (Ratle, Camps-Valls&Weston, 2010), 

semi-supervised HSI classification NN system. SVM is in fact higher than the traditional NN with respect to 

classification accuracy and computing costs for remote sensing classification activities. A deeper NN architecture 

was considered in (Hinton&Salakhutdinov, 2006)a strong classification model, which is competing with SVM for 

its classification results. 

In several areas, profound learning approaches attain promising results. Deep learning involves the analysis of 

visual problems by the convolutional neural networks (CNNs). CNNs are biological and multi-layered deep 

learning groups using a single neural network trained from raw pixel values to output classification. Initial 

introduction to the concept of CNNs was (Fukushima, 1988) and improved in (LeCun, Bottou, Bengio&Haffner, 

1998), while (Ciresan, Meier,Masci, Gambardella&Schmidhuber, 2011; Simard, Steinkraus &Platt, 2003)has been 

streamlined and condensed. CNNs recently outperformed several other traditional approaches, including human 

performance, in several tasks related to perception, such as image classification (Krizhevsky,Sutskever&Hinton, 

2012; Ciregan, Meier&Schmidhuber, 2012), scene marking, object identification, face recognition and digit 

classification through the widespread data sources and a GPUs implementation. CNNs were also used for other 

fields, as were voice recognition, in addition to the tasks of vision. It is a proven method of interpreting the quality 

of visual images as an important class of models, providing some cutting-edge findings on the classification of 

visual images and on other visual problems.  

The classification efficiency of CNNs has been shown to be much higher than that of standard SSM classifiers 

and deep-CNN (Krizhevsky,Sutskever&Hinton, 2012) in the visual field. However, although CNNs have only 

been taken into account for visual difficulties, uncommon littoral material is available on the HSI classification 

technique with several layers. In this article, the use of CNNs for hyper-spectral data can be effectively classified 
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after suitable layer architectures have been defined. Our observations suggest that standard CNNs like LeNet-5 

(LeCun, Bottou,Bengio& Haffner, 1998) are not currently valid for hyperspectral data in two convolutional layers. 

Otherwise, the CNN architecture containing 5 layers with weights for the supervised HSI classification is simple 

but efficient. 

2. CNNs 

CNNs represents FFNN consisting of combinations of layers including convolutional, max-pooling and 

connected layers. It tends to exploit local correlation in spatial distribution using local pattern with its neurons. 

Figure 1 illustrates a standard convergence network architecture. 

Figure.1 A typical CNN architecture. 

 

 

The neuron linked with its adjacent neurons in the next layer in ordinary profound neural networks. CNNs 

differ from regular NNs because, depending on their relative position, neurons in convolutions are only sparingly 

bound to the next levels. In other words, any secret activation in a completely connected DNN is calculated by 

multiplying the whole weight of the input in this layer. In CNNs, however, any hidden functions are estimated by 

multiplying a local input. As shown in Figure 1, weight is then divided across the total input area.  

A function can be found through the input data due to duplication of weights in a CNN. The neuron detected 

by the feature is changed as well as the image is moved. The pooling is used to make the characteristics invariant 

and to summarize the output of many neurons via a pooling mechanism in convolutional layers. Maximum typical 

pooling function. The maximum value of the input is generated by a Max Pooling function. Max divides the input 

data and the maximum value for each subregion into a non-overlapping series of windows, reducing statistical 

complexity for high latitudes and creating a type of translation invariance. The calculation chain of a CNN is used 

for classification and ends up in a completely linked network, which incorporates information across all sites and 

all the characteristics of the next stage. 

The lower layers consisting of different convolutional and maximum pooling layers are often image-

identifying CNNs while the upper layers are entirely bound to the standard MLP NNs. In this article, we will 

discuss what is the appropriate CNN-based HSI classification architecture and policy. 

3. CNN Classification 

Gradually, CNNs hierarchy is effective for learning the visual depictions. We can see that the curve of any 

class is visually distinct from other classes, but certain classes with a human eye are relatively difficult to discern. 

We know that CNNs can compete in certain visual tasks and perform far better than humans. It encourages us to 

research the feasibility of using spectral signatures to add CNNs to HSI classification. 
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Training Strategies 

This is how we can learn the CNN classifier parameter space. The forward propagation helps to calculate 

current parameters for the final classification outcome of the entries. The back propagation is used to adjust 

workable parameters to reduce difference between the original nad predicted classified outputs.  

Algorithm 1: Our CNN-based method 

function cnnmodel 

Type_Layer = CL, MPL, FCL, OL 

Set Activation function 

Set m = Model(); 

for i=1:4 do 

Set L = new L(); 

t_l = T_L 

Size_input = ni 

params = i 

n = new Neuron; 

add_L(); 

end for 

return M; 

end  

Initialize min error, learning rate, number of max iteration, batch size 

Generate random weights  

set Model = InitCNNModel; 

err = +; iter = 0 

while err  > min(err) and iter< max(iter) do 

err = 0; 

for batch i=1:training_batches 

train_cnnModel with TrainingData and TrainingLabel 

Update params  

err = mean + err; 

end for 

3.4. Classification 

Built the CNN classification for HSI image classification, since we specify the architecture and all 

corresponding trainable parameters. The classification method is much like the move forward in which the 

outcome will be calculated. 

4. Experiments 

The Python language and Theano [30] were used to execute all the programming. Theano is a Python library 

which makes mathematical expressions using multi-dimensional arrays easy to describe, optimize and evaluate on 

GPUs efficiently and conveniently. This results in a PC with a 2.8 GHz Intel Core i7 and a GTX 465 graphics card 

Nvidia GeForce. 
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4.1. The Data Sets 

The efficacy of the proposed approach is assessed by 3 HSI data that includes Salinas, Indian Pines and Pavia 

University scenes. In the ground real-world map for testing, we randomly pick 200 labeled pixels per course from 

all the results. Development statistics are drawn from the training data, divided into training and evaluation 

samples in order to adjust the criteria of the proposed CNN classification. In addition, every pixel is evenly scaled. 

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in North-West Indiana has collected the 

Indian Pines data collection. The study eliminates classes with a labelled samples and picks classes as in Table 1. 

Table.1. Indian Pines - Training/test samples. 

Dataset Training Testing 

Corn-notill 1228 200 

Corn-mintill 630 200 

Grass-pasture 283 200 

Hay-windrowed 278 200 

Soybean-notill 772 200 

Soybean-mintill 2255 200 

Soybean-clean 393 200 

Woods 1065 200 

Total 6904 1600 

 

The AVIRIS sensor was also used to capture the second data, capturing a 3.7m space resolution area over the 

Salinas Valley in California. Pixels with 220 bands are used in the shot. It consists primarily of herbs, naked soil 

and fields of vineyards. There are also 16 main grades, and Table 2 lists the numbers of samples for preparation 

and research. 

Table.2. Salinas - Training/test samples 

Class Training Test 

Broccoli green weeds 1 1809 200 

Broccoli green weeds 2 3526 200 

Fallow 1776 200 

Fallow rough plow 1194 200 

Fallow smooth 2478 200 

Stubble 3759 200 

Celery 3379 200 

Grapes untrained 11071 200 

Soil vineyard develop 6003 200 

Corn senesced green weeds 3078 200 

Lettuce romaine, 4 wk 868 200 

Lettuce romaine, 5 wk 1727 200 

Lettuce romaine, 6 wk 716 200 

Lettuce romaine, 7 wk 870 200 

Vineyard untrained 7068 200 
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Vineyard vertical trellis 1607 200 

 

The imaging scene was collected under DLR's HySens project with a geographic coverage of pixels. Until 

removing the water belt, the data collection had 103 spectral bands. It covers from 0.43 to 0.86m in spectrum and 

has an output of 1.3m in space. The ground truth map contains approximately 42776 pixels of 9 groups and the 

numbers of the preparation and research samples are presented in Table 3. 

Table.3. Pavia data - Training/test samples 

Class Training Testing 

Asphalt 6431 200 

Meadows 18449 200 

Gravel 1899 200 

Trees 2864 200 

Sheets 1145 200 

Bare soil 4829 200 

Bitumen 1130 200 

Bricks 3482 200 

Shadows 747 200 

Total 40976 1800 

 

 

4.2. Results and Comparisons 

The classification efficiency comparison between the system being suggested and the standard SVM classifier 

is given in Table 4. The classification results from the CNN classifier are shown in Figures 4, 5 and 6. In addition 

in Figure 7, the CNN classification is higher for individual groups as seen relative to the SVM. 

Table.4. Comparison of Accuracy 

Data set The proposed CNN RBF-SVM 

Indian Pines 91.23% 89.52% 

Salinas 93.54% 90.24% 

University of Pavia 93.48% 90.66% 

 

Figure.4. Indian Pines dataset [26] - Composition maps 
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Figure.5. Salinas - Composition maps 

 

 

Figure.6. Pavia dataset - Composition maps 

 

 

The rating accuracy of any data will be more than 90% due to rising training time. However, the CNN 

classification proposed has the same benefits as deep learning algorithms (see Table 5). 

Table.5. Indian Pines – NN Performance 

Method Accuracy Training Time (s) Testing Time (s) 

Two-layer NN 87.84% 2834 1.69 

DNN 88.01% 6562 3.32 

LeNet-5 88.99% 5245 2.45 

Our CNN 91.12% 4385 1.99 
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With a growing number of iterations, our network convergence is demonstrated by only 200 training samples 

per class, the size of the loss function is decreased. Furthermore, after the 5-minute training phase, the cost benefit 

is lowered, but the appropriate test precision is reasonably stabilised, which shows that this network is overfitting. 

Our proposal for CNN is obviously more accurate than SVM. It is clear. Although the standard deep-learning 

approach will outstrip the SVM classifier, a lot of training samples for building self-encoders are needed. 

5. Conclusion 

In this paper, we develop a CNN classification model that is developed for classification of HIS images. The 

result of simulating shows that the proposed model achieves improved classification accuracy than the exiting 

SVM. We are exploring the use and performance of CNNs for HSI classification. A network architecture known 

as the Siamese Network may be used in the future and is proven resilient when the number of training samples per 

group is limited. In addition, recent profound learning research has shown that uncontrolled education may be 

used for training CNNs, which significantly reduces the need for labelled samples. In the future, deep learning, in 

particular deep CNNs, could have considerable potential for HSI classification. We still may not take the spatial 

correlation into account in the present research and focus solely on the spectral signatures. 
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