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Abstract 

A generalised definition of HVG[4] say 𝑚 HVG  is considered with the vertex sets 𝑉𝑛[4]. To analyse graph 

theoretic properties of 𝑚 HVG for any value of 𝑚 it is very much necessary to find the position of each and 

every point of the vertex set 𝑉𝑛. For this we have derived some fruitful results which help us to find out the 

position of each and every vertex set 𝑉𝑛  and those results also help us to generate any vertex set 𝑉𝑛 of period 2𝑛 

without knowing 𝑉𝑛−1 . Some graph theoretic properties of mHVG is discussed in this paper. 

Keywords: Periodic points, Period doubling bifurcation , Horizontal Visibility Graph 

 

Introduction 

Horizontal visibility graph algorithm plays an important role for network analysing time series.Zhong et 

al.[6]have developed a novel multiscale limited penetrable horizontal visibility graph to analyse non linear time 

series from the perspective of multiscale and complex network analysis.Martin et al.[2] investigated the 

characteristic of node degree distribution constructed bu using HVG for time series corresponding to 28 chaotic 

maps, 2 chaotic flows and 3 different stochastic processes.Wang et al.[3] have discussed topological properties 

of independent and identically distributed random series using horizontal visibility graph.Lacasaet al.[1] have 

proposed a method to measure a real valued time seies irreversibility by combining two different tools and 

horizontal visibility algorithm was one of them. 

Dutta et al.[4] have considered the period doubling bifurcation points of logistic map and considering the 

relative positions they have obtained a mathematical model𝑉𝑛 .The mathematical model have the property that 

one can say the position of the periodic points  of 𝑉𝑛 (say) without calculating them. They have taken the 

elements of 𝑉𝑛 and defined horizontal visibility graph.Some properties of the vertices set have been derived by 

them and by those properties they have derived the degree of some vertices of the Horizontal visibility graph. 

 To get the degree of all the points of 𝑉𝑛[4] Dutta et al.[ 5]  have partitioned the sets 𝑉𝑛 in to 𝑛 sets and defined 

level sets.They have derived the important property that each element of a level set is incident with maximum 

two  elements from each partitioned set which have been used to find the total degree of the vertex set. 

2. Main Results : 

Definition 2.1 

𝑮𝒏,𝒎 = (𝑽𝒏, 𝑬𝒏,𝒎) 

A horizontal visibility graph say 𝐺𝑛,𝑚  is constructed with the vertices sets of 𝑉𝑛 [4] and the edge set is defined  

as the following: 

𝐸𝑛 = {((𝑛1, 𝑖), (𝑛2, 𝑗))| 𝑁((𝑛1, 𝑖), (𝑛2, 𝑗)) ≤ 𝑚}where𝑁((𝑛1, 𝑖), (𝑛2, 𝑗)) represents the number of elements of 

the form (𝑘, 𝑘1) such that 𝑘1 > 𝑖 or 𝑗 and 𝑛1 < 𝑘 < 𝑛2 and 𝑚 is a non negative integer. 

 

Theorem 2.2:(2𝑘  , 2𝑛−𝑘 − 1) exists for a fixed 𝑛in 𝑉𝑛, 𝑛 ≥ 2 and 𝑘 = 1,2,3, … . 𝑛 − 1 

Proof : Clearly the result is true for 𝑛 = 2. Let the result be true for 𝑛 = 𝑝 i.e in 𝑉𝑝(2𝑘 , 2𝑝−𝑘 − 1) exists. To 

prove in 𝑉𝑝+1 , (2𝑘  , 2𝑝+1−𝑘 − 1 ) exists  for 𝑘 = 1,2,3, … 𝑝 .  
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 In 𝑉𝑝+1  by the definition of 𝑉𝑛,1 we have (2. 2𝑘 , 2𝑝−𝑘 − 1)=   (2𝑘+1 , 2𝑝−𝑘 − 1) = (2𝑘+1 , 2(𝑝+1)−(𝑘+1) − 1 ) =  

(2𝑡  , 2𝑝+1−𝑡 − 1 ) exists for 𝑡 = 2,3, … , 𝑝 where 𝑘 + 1 = 𝑡exists. 

When 𝑡 = 1 the element (2, 2𝑛−1)  exists [4].So we can say that the element (2𝑘 , 2𝑛−𝑘) exists and hence the 

theorem. 

Theorem 2.3:If (𝑥, 𝑦) ∈ 𝑉𝑛 such that 𝑦 ≤ 2𝑛−𝑘 − 1 ⟹ (𝑥 + 2𝑘−1 , 2𝑛−𝑘+1 − 1 − 𝑦) exist in 𝑉𝑛where 2 ≤ 𝑘 ≤

(𝑛 − 1). 

 

Proof: We prove the theorem by induction in 𝑉𝑛 .Clearly the result is true for 𝑛 = 1,2,3. Let the result be true in 

𝑉𝑛−1 . 

Let (𝑥, 𝑦) ∈ 𝑉𝑛  such that ≥ 2 . Since 𝑦 ≤ 2𝑛−𝑘 − 1 so there exist  ( 
𝑥

2
 , 𝑦)  in 𝑉𝑛−1 such that (2.

𝑥

2
  , 𝑦) ∈ 𝑉𝑛 . 

Now for  𝑘 ≥ 2 , (
𝑥

2
 , 𝑦) ∈ 𝑉𝑛−1  𝑎𝑛𝑑 𝑦 ≤  2𝑛−𝑘 − 1 

So for𝑦 ≤ 2𝑛−𝑘 − 1 , ( 
𝑥

2
+ 2𝑘−2 , 2𝑛−𝑘+1 − 1 − 𝑦) exists in 𝑉𝑛−1 

∴ (2.
𝑥

2
+ 2.2𝑘−2 , 2𝑛−𝑘+1 − 1 − 𝑦)exists in 𝑉𝑛 . 

Hence the theorem. 

 

Theorem 2.4:(𝑎, 𝑏) ∈  𝐸𝑛  ⇔ (𝑎 − 1 , 2𝑛 − 1 − 𝑏)  ∈  𝑂𝑛 where  𝐸𝑛 = {(𝑎, 𝑏) ∈ 𝑉𝑛| 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛}  and 𝑂𝑛 =

{(𝑎, 𝑏)|𝑎 𝑖𝑠 𝑜𝑑𝑑} 

 

Proof:  We prove this result by induction. Clearly the result is true in 𝑉1 . Let the result be true in 𝑉𝑛−1  i.e  

(𝑎, 𝑏) ∈ 𝐸𝑛−1 ⇔ (𝑎 − 1, 2𝑛−1 − 1 − 𝑏) ∈  𝑂𝑛−1. We have to prove the resuly is true in 𝑉𝑛 i.e  (𝑎, 𝑏) ∈ 𝐸𝑛 ⇔

(𝑎 − 1 , 2𝑛 − 1 − 𝑏) ∈  𝑂𝑛 . 

If (𝑎, 𝑏) ∈ 𝐸𝑛 then three cases arise 

Case 1 

𝑎 = 2𝑘for some integer 𝑘, 𝑘  is even . Since 𝑘 is even then (𝑘, 𝑏) ∈  𝑉𝑛−1i.e ∈ 𝐸𝑛−1 . So by induction (𝑘 −

1 , 2𝑛−1 − 1 − 𝑏) ∈  𝑂𝑛−1 . So by the construction of  𝑉𝑛,4we  have[2(𝑘 − 1) + 1 , 2𝑛−1 + 2𝑛−1 − 1 − 𝑏] ∈  𝑉𝑛 

i.e [2𝑘 − 1, 2𝑛 − 1 − 𝑏) ∈ 𝑉𝑛 = (𝑎 − 1 , 2𝑛 − 1 − 𝑏)  ∈  𝑉𝑛 . 

Case 2 

There exist (𝑘, 𝑏) ∈ 𝑉𝑛−1 , 𝑘 is odd such that 𝑎 = 2𝑘 + 4. Since 𝑘 is odd so (𝑘, 𝑏) ∈ 𝑂𝑛−1 . Now 𝑘 = 𝑘 + 1 − 1  

and 𝑘 + 1 is even. So by induction (𝑘 + 1, 2𝑛−1 − 1 − 𝑏) ∈ 𝐸𝑛−1 .Also by 𝑉𝑛,4
/

 we have [2. (𝑘 + 1) + 1, 2𝑛−1 +

2𝑛−1 − 1 − 𝑏) ∈ 𝑉𝑛  i.e ( 2𝑘 + 3, 2𝑛 − 1 − 𝑏 ) ∈ 𝑉𝑛 i.e (𝑎 − 1, 2𝑛 − 1 − 𝑏) ∈ 𝑉𝑛i.e(𝑎 − 1,2𝑛 − 1 − 𝑏) ∈ 𝑂𝑛 . 

 Case 3 

If 𝑎 = 2 then  (2,2𝑛−1 − 1) exist in 𝑉𝑛. Then we know that (1,2𝑛−1) ∈ 𝑉𝑛 [4] 

Also 2𝑛 − 1 − 2𝑛−1 + 1 = 2𝑛−1 and hence the theorem. 

 

Theorem 2.5:If (𝑥, 𝑦) ∈ 𝑉𝑛 , 0 ≤ 𝑦 ≤ 2𝑛−𝑝 − 1  and 1 < 𝑝 ≤ 𝑛 then (𝑥 + 1 + 2 + 22 + ⋯ + 2𝑝−2 , 2𝑛−1 +

2𝑛−2 + ⋯ + 2𝑛−𝑝+1 + 𝑦) exist in 𝑉𝑛 . 

Proof:Let (𝑥, 𝑦) ∈ 𝑉𝑛 , 0 ≤ 𝑦 ≤ 2𝑛−𝑝 − 1.Then (
𝑥

2
 , 𝑦) ∈ 𝑉𝑛−1, 0 ≤ 𝑦 ≤ 2𝑛−𝑝 − 1 .also by using theorem 2.3 it 

can be said that the element ( 
𝑥

2
+ 2𝑝−2  , 2𝑛−𝑝+1 − 1 − 𝑦) exist in 𝑉𝑛−1 for 2 ≤ 𝑝 ≤ (𝑛 − 2). 

Now by theorem 2.4 we have 

( 
𝑥

2
+ 2𝑝−2 − 1 , 2𝑛−1 − 1 − 2𝑛−𝑝+1 + 1 + 𝑦 )exist in 𝑉𝑛−1 

⇒ ( 
𝑥

2
+ 2𝑝−2 − 1 , 2𝑛−1 − 2𝑛−𝑝+1 + 𝑦)exist in 𝑉𝑛−1 . 

Now , 

2 (
𝑥

2
+ 2𝑝−2 − 1) + 1 , 2𝑛−1 + 2𝑛−1 − 2𝑛−𝑝+1 + 𝑦)exist in 𝑉𝑛 . 

⇒ (𝑥 + 2𝑝−1 − 1 , 2𝑛 − 2𝑛−𝑝+1 + 𝑦)exist in 𝑉𝑛. 

⇒ (𝑥 + 2𝑝−1 − 1 , 2𝑛+1 (1 −
1

2𝑝) − 2𝑛)exist in 𝑉𝑛. 

⇒ (𝑥 + 2𝑝−1 − 1 , 2𝑛 − 2𝑛−𝑝+1)exist in 𝑉𝑛. 
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Again, 

𝑥 + 1 + 2 + 22 + ⋯ + 2𝑝−2 

  = 𝑥 +
2𝑝−1−1

2−1
 

  = 𝑥 + 2𝑝−1 − 1 

Again , 

2𝑛−1 + 2𝑛−2 + … + 2𝑛−𝑝+1 + 𝑦 

   = 2𝑛 (
1

2
+

1

22 + ⋯ +
1

2𝑝−1) + 𝑦 

  = 2𝑛 (
1−(

1

2
)

𝑝

1−
1

2

) + 𝑦 

  = 2𝑛+1 − 2𝑛+1−𝑝 

When 𝑝 = 2 

0 ≤ 𝑦 ≤ 2𝑛−2 − 1and to show (𝑥, 𝑦) ∈ 𝑉𝑛  ⟹ (𝑥 + 1, 2𝑛−1 + 𝑦) ∈ 𝑉𝑛  which follows from the definition of 𝑉𝑛. 

And hence  the theorem. 

Theorem 2.6:If (𝑎, 𝑥) ∈ 𝑉𝑛 such that 𝑎 is even and 𝑎 = 2𝑥1 + 2𝑥2 + ⋯ + 2𝑥𝑡where 𝑥1 > 𝑥2 > 𝑥3 … > 𝑥𝑡then 

𝑥 = ((2𝑛−𝑥𝑡 − 1) − (2𝑛−𝑥𝑡−1 − 1) + ⋯ … . +(−1)𝑡−2(2𝑛−𝑥2 − 1) + (−1)𝑡−1(2𝑛−𝑥1 − 1)) 

 

 Proof:  Let (𝑎, 𝑥) ∈ 𝑉𝑛 such that 𝑎 is even 

Let = 2𝑥1 + 2𝑥2 + ⋯ + 2𝑥𝑡  , where 𝑥1 > 𝑥2 > ⋯ > 𝑥𝑡 

First we show that if = 2𝑥1 + 2𝑥2  , 𝑥1 > 𝑥2  then (2𝑥1 + 2𝑥2  , (2𝑛−𝑥2 − 1) − (2𝑛−𝑥1 − 1)) exist in 𝑉𝑛. 

Using theorem 2.3 we get  (2𝑥1  , 2𝑛−𝑥1 − 1) ,  (2𝑥2  , 2𝑛−𝑥2 − 1) ,  (2𝑥3  , 2𝑛−𝑥3 − 1) , ……..,(2𝑥𝑡  , 2𝑛−𝑥𝑡 − 1) 

exist in 𝑉𝑛. 

Now. 

𝑥1 > 𝑥2 

⇒ 𝑥1 ≥ 𝑥2 + 1 

⇒ 𝑛 − 𝑥1 ≤ 𝑛 − 𝑥2 − 1 

⇒ 2𝑛−𝑥1 − 1 ≤ 2𝑛−𝑥2−1 − 1 

Now by using theorem 2.4 we get (2𝑥1 + 2𝑥2  , 2𝑛−𝑥2−1+1 − 1 − (2𝑛−𝑥1 − 1)) i.e  (2𝑥1 + 2𝑥2  , (2𝑛−𝑥2 − 1) −

(2𝑛−𝑥1 − 1)) exist in 𝑉𝑛. 

Similarly we can show that if 𝑎 = 2𝑥1 + 2𝑥2 + 2𝑥3  then (2𝑥1 + 2𝑥2 + 2𝑥3  , (2𝑛−𝑥3 − 1) − (2𝑛−𝑥2 − 1) +

(2𝑛−𝑥1 − 1)) exist in 𝑉𝑛. 

Thus if  𝑎 = 2𝑥1 + 2𝑥2 + ⋯ + 2𝑥𝑡  where 𝑥1 > 𝑥2 > ⋯ > 𝑥𝑡 

Then 

𝑥 = ((2𝑛−𝑥𝑡 − 1) − (2𝑛−𝑥𝑡−1 − 1) + ⋯ … . +(−1)𝑡−2(2𝑛−𝑥2 − 1) + (−1)𝑡−1(2𝑛−𝑥1 − 1)) 

 

Theorem 2.7: If (𝑥, 𝑦) ∈ 𝑉𝑛such that 2𝑘−1  ≤ 𝑦 ≤ 2𝑘 − 1 then 𝑥 = 2𝑛−𝑘𝑚 for some odd values of 𝑚, 𝑘 ≤ (𝑛 −

1). 

 

Proof: We know (2𝑘 , 2𝑛−𝑘 − 1) exist. So putting 𝑘 = 𝑛 − 1 it can be said that (2𝑛−1 ,1) exist. 

Let 𝐴1 = {(0,0), (2𝑛−1 ,1)} and 𝐴𝑘 = {(𝑥, 𝑦) ∈ 𝑉𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 2𝑘−1  ≤ 𝑦 ≤ 2𝑘 − 1} 

We have to show that𝑥 = 2𝑛−𝑘𝑚 , 𝑚 is odd. 

We show it by induction. 

Let 𝐴𝑘−1 = {(𝑥, 𝑦) ∈ 𝑉𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 2𝑘−2  ≤ 𝑦 ≤ 2𝑘−1 − 1} and 𝑥 = 2𝑛−𝑘+1𝑚 

We know that if 0 ≤ 𝑦 ≤ 2𝑛−𝑘 − 1 then (𝑥 + 2𝑘−1 , 2𝑛−𝑘+1 − 1 − 𝑦) exists. 

Putting 𝑘 = 𝑛 − 𝑘 + 1 

0 ≤ 𝑦 ≤ 2𝑘−1 − 1then(𝑥 + 2𝑛−𝑘+1−1 , 2𝑛−(𝑛−𝑘+1)+1 − 1 − 𝑦)  exists. 

⇒ (𝑥 + 2𝑛−𝑘 , 2𝑘 − 1 − 𝑦)exists∀𝑥 such that (𝑥, 𝑦) ∈  ⋃ 𝐴𝑘−1
𝑘−1
𝑖=1  

⇒ (𝑥 + 2𝑛−𝑘 , 2𝑘 − 1 − 𝑦)exists if 0 ≤ 𝑦 ≤ 2𝑘−1 − 1 

and𝑥 + 2𝑛−𝑘 is an odd multiple of 2𝑛−𝑘 
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and2𝑘 − 1 − 2𝑘−1 + 1 ≤ 2𝑘 − 1 − 𝑦 ≤ 2𝑘 − 1 

Thus 𝐴𝑘 = {(𝑥, 𝑦) ∈ 𝑉𝑛|2𝑘−1 − 1 ≤ 𝑦 ≤ 2𝑘 − 1} then 𝑥 is odd multiple of 2𝑛−𝑘 

NOTE: By theorem 2.4,2.5,2.6 we can find position of any element of a vertex set 𝑉𝑛. 

Corollary 2.8:The elements {(𝑎, 𝑏)|𝑎 ≤ (𝑥 − 2 − 2𝑚)} and {(𝑐, 𝑑)| 𝑐 ≥ (𝑥 + 2 + 2𝑚)} can not be incident 

with the element (𝑥, 𝑦) where (𝑥, 𝑦) ∈ 𝐺𝑛,𝑚(𝑉𝑛 , 𝐸𝑛,𝑚) and 𝑥 is even. 

 

Proof :Let (𝑥, 𝑦) ∈ 𝐺𝑛,𝑚(𝑉𝑛 , 𝐸𝑛,𝑚) . The elements {(𝑎, 𝑏)|𝑎 ≤ (𝑥 − 2 − 2𝑚)} can not be incident with (𝑥, 𝑦) 

because there are minimum  𝑚 + 1 odd elements between 𝑎 and 𝑥  and position of odd elements in 𝑉𝑛 are 

greater than even elements. 

Corollary 2.9: 

The elements {(𝑎, 𝑏)|𝑎 ≤ (𝑥 − 1 − 2𝑚)} and {(𝑐, 𝑑)| 𝑐 ≥ (𝑥 + 1 + 2𝑚)} can not be incident with the element 

(𝑥, 𝑦) where (𝑥, 𝑦) ∈ 𝐺𝑛,𝑚(𝑉𝑛 , 𝐸𝑛,𝑚) and 𝑥 is odd. 

 

Proof:Since between 𝑥 and 𝑥 − 1 − 2𝑚 there are 𝑚 + 1 odd elements so the result follows. 

 

Corollary 2.10: The elements {(𝑎, 𝑏)|𝑎 ≥ (𝑥 − 1 − 𝑚)} and {(𝑐, 𝑑)| 𝑐 ≤ (𝑥 + 1 + 𝑚)}are  incident with the 

element (𝑥, 𝑦) where (𝑥, 𝑦) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚) and 𝑥 is odd. 

 

Theorem 2.11: Let  (𝑥, 𝑗)  be in 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚)where  𝑥 is odd. Let  𝑂 = {(𝑝, 𝑞) |𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑝 <

𝑥 𝑎𝑛𝑑  𝑝 ≥ (𝑥 − 1 − 𝑚)}. Let𝑟 = 2𝑘𝑠 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 {𝑦|(𝑥 − 1 − 2𝑚) ≤ 𝑦 ≤ (𝑥 − 1 − 𝑚) }   such that   (𝑚 −

𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0, where  𝑟𝑡 is the number of elements of the form (2𝑡𝑢 , 𝑞) in 𝑂and 𝑛(ℎ) gives the number 

of  odd elements from 𝑥 − 1 to 𝑟 then (𝑟, 𝑣) for some 𝑣 will be adjacent to (𝑥, 𝑗). 

Proof:  Let  (𝑥, 𝑗) be in 𝐺𝑚,𝑛 = (𝑉𝑛 , 𝐸𝑚,𝑛),where 𝑥 is odd. Let𝑂 = {(𝑝, 𝑞)|𝑝 is even and 𝑝 < 𝑥 and ≥ (𝑥 − 1 −

𝑚)} . In other words we can say that the elements of 𝑂 are incident with (𝑥, 𝑗) . Clearly if  𝑥 > 𝑝 ≥ (𝑥 − 1 −

𝑚)then (𝑝, 𝑞) ∈ 𝑂. Also whenever 𝑝 < (𝑥 − 1 − 2𝑚) then (𝑝, 𝑞) ∉ 𝑂 .Further if We form another set 𝐷 = 

{(𝑎, 𝑏)|(𝑥 − 1 − 2𝑚) ≤ 𝑎 ≤ (𝑥 − 1 − 𝑚) 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛. }  then we find the possible condition such that the 

elements of 𝐷 will be an element of 𝑂.  

Let (𝑟, 𝑠) ∈ 𝐷 such that 𝑟 is the largest element.  Let ℎ be the number of odd elements   between 𝑥 − 1to  𝑟.  Let 

𝑘  be the greatest positive integer such that  𝑟 = 2𝑘𝑠 where 𝑠 is odd and let 𝑟𝑡 be the number of elements of the 

form (2𝑡𝑢 , 𝑞) in Owhere ≤ 𝑘 . Then if (𝑚 − 𝑛 − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0implies (𝑟, 𝑠) ∈ 𝑂 .  

 The condition (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0is taken because between (𝑥, 𝑗) and (𝑟, 𝑣) if there are 𝑚 + 1 elements 

whose positions are greater than 𝑗 or 𝑣 then they will not be adjacent. Since we know that odd elements occupy 

higher position than even elements so here 𝑛(ℎ) is subtracted because 𝑛(ℎ) is the number of odd elements from 

𝑥 − 1 to 𝑟 and by theorem 2.7 it can be said that  ∑ 𝑟𝑡 = ∑ 2𝑡𝑢𝑡≤𝑘𝑡≤𝑘 gives the sum of those elements which may 

occupy higher position than 𝑣. Thus if (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0 that means  we are sure that  there does not 

exist 𝑚 + 1 elements which occupy greater position than 𝑣  and hence (𝑟, 𝑣) will be adjacent with (𝑥, 𝑗). Hence 

the theorem. 

 

            The above condition is sufficient but not necessary i.e if  (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 < 0 we are not sure 

whether the element (𝑟, 𝑣) will be adjacent with (𝑥, 𝑗).At that time we may take help of theorem 2.2, 2.4, 2.6, 

2.7 

However if 𝐷 =  {𝑦|(𝑥 − 1 − 2𝑚) ≤ 𝑦 ≤ (𝑥 − 1 − 𝑚) } after getting (𝑟, 𝑣) we can add the element in the set 𝑂 

and a new set 𝑂 can be formed and again 𝑟 will be taken from the set 𝐷. Thus we can continue the process.  

Theorem 2.12: 

Let  (𝑥, 𝑗)  be in 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚), where  𝑥 is odd. Let  𝑂 = {(𝑝, 𝑞) |𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑝 > 𝑥 𝑎𝑛𝑑 𝑝 ≤ (𝑥 + 1 +

𝑚)}. .Let 𝑟 = 2𝑘𝑠 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 {𝑦|(𝑥 + 1 + 𝑚) ≤ 𝑦 ≤ (𝑥 + 1 + 2𝑚) }   such that   (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 >

0, where  𝑟𝑡 is the number of elements of the form (2𝑡𝑢 , 𝑞)in 𝑂. and 𝑛(ℎ) gives the number of odd elements 

from 𝑥 + 1 to 𝑟 then (𝑟, 𝑣) for some 𝑣 will be adjacent to (𝑥, 𝑗). 
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Proof:Let  (𝑥, 𝑗)be in 𝐺𝑚,𝑛 = (𝑉𝑛 , 𝐸𝑚,𝑛), where𝑥 is odd.Let  

𝑂 = {(𝑝, 𝑞) |𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑝 > 𝑥 𝑎𝑛𝑑 𝑝 ≤ (𝑥 + 1 + 𝑚)} . In other words we can say that  

𝑂 = {(𝑝, 𝑞) |𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑝 > 𝑥 𝑎𝑛𝑑 (𝑝, 𝑞)𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑖𝑡ℎ (𝑥, 𝑗) }then if  𝑥 < 𝑝 ≤ (𝑥 + 1 + 𝑚) then 

(𝑝, 𝑞) ∈ 𝑂. Also whenever 𝑝 > (𝑥 + 1 + 2𝑚)then (𝑝, 𝑞) ∉ 𝑂 . Further if We form another set D = {(𝑎, 𝑏)|(𝑥 +

1 + 𝑚) < 𝑎 ≤ (𝑥 + 1 + 2𝑚) 𝑎𝑛𝑑 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛. }  then we find the possible conditions such that the elements of 𝐷 

will be an element of 𝑂.  

Let (𝑟, 𝑠) ∈ 𝐷 such that 𝑟 is the smallest integer.   Let 𝑛(ℎ) be the number of odd elements between 𝑥 + 1 to𝑟 . 

Let 𝑘 be the greatest positive integer such that 𝑟 = 2𝑘𝑚 . Let 𝑟𝑡 be the number of elements of the form 

(2𝑡𝑚 , 𝑞)in  . Then if (𝑚 − 𝑛 − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0implies (𝑟, 𝑠) ∈ 𝑂 .  

If  (𝑚 − 𝑛 − ∑ 𝑟𝑡  )𝑡≤𝑘 < 0 we are not sure whether the element (𝑟, 𝑣) will be adjacent with (𝑥, 𝑗). At that time 

we may take help of theorem 2.2 , 2.4, 2.6,  2.7. 

 

Corollary 2.13:Let  (𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚)  and be an element of  level𝑞 set of 𝐺𝑛. let = {(𝑎 −

2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5 … (𝑚 + 1), (𝑚 + 3), … (2𝑚 + 1)} . The elements of 𝑂 belongs to level  𝑝set[2] where 𝑝 <

𝑞 . 

 

Corollary 2.14:Let  (𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚)  and be an element of level 𝑞 set of 𝑉𝑛. Let = {(𝑎 −

2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 2,4,6, … 2𝑚} . The elements of 𝑂 belongs to level  > 𝑝 set where 𝑝 < 𝑞. 

 

Theorem2.15:Let(𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚) and be an element of  level 𝑞 set of 𝑉𝑛For 𝑝 < 𝑞 , let𝑂 =

{(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5 … (𝑚 + 1)} ..Let 𝑟 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  {𝑎 − 2𝑝−1𝑡 , 𝑡 = 𝑚 + 3, 𝑚 + 5, … , 2𝑚 + 1}such 

that   (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0, where 𝑟𝑡 is the number of elements of the form 2𝑡𝑚 + (1 + 2 + 22 + ⋯ +

2𝑝−2) in 𝑂 and 𝑡 ≤ 𝑘and if ℎ = {(𝑎 − 2𝑝−1𝑡, 𝑑𝑡), 𝑡 = 2,4,6, … 𝑟} then 𝑛(ℎ) gives the cardinality of the set 

ℎ.Then (𝑟, 𝑠) will be adjacent with (𝑎, 𝑏) and 𝑚 is even. 

 

Proof:Let  (𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚) and be an element of  level𝑞 set of 𝑉𝑛 .let𝑂 = 

{(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5 … (𝑚 + 1)} and 𝑚 is even.We claim that elements of 𝑂 are adjacent with (𝑎, 𝑏) 

because  if we  consider the elements   (a −2𝑝−1𝑡, 𝑑𝑡 ) where 𝑡 = 1,2, … 𝑚 then since 𝑚 is even so among these  

𝑚/2  elements are in level > 𝑝 and 
𝑚

2
  are in level  𝑝 .But (𝑎 − 2𝑝−1(𝑚 + 1), 𝑑𝑚+1) is in level p set. So 

elements of 𝑂 are adjacent with (𝑎, 𝑏). 

Now  (𝑎 − 2𝑝−1(𝑚 + 2), 𝑑𝑚+2) is in level > 𝑝 set.So the element (a −2𝑝−1(𝑚 + 3), 𝑏𝑙) which is in level 𝑝 set  

is to be decided whether it is adjacent with (𝑎, 𝑏) or not . The following two sets are obtained when 𝑚 is even.  

𝑂 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5 … (𝑚 + 1)}and 𝐷 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 𝑚 + 3, 𝑚 + 5, … ,2𝑚 + 1} 

We find the condition under which elements of 𝐷 will be adjacent with (𝑎, 𝑏). 

        Let (𝑟, 𝑠) ∈ 𝐷 such that 𝑟 is the largest integer.   Let 𝑛(ℎ)  be the number of  elements belonging to level >

𝑝  between  𝑎 − 2𝑝−1 to 𝑟  . Let 𝑘 be the greatest positive integer such that 𝑟 = 2𝑘𝑚 + (1 + 2 + 22 + ⋯ +

2𝑝−2) . Let 𝑟𝑡 be the number of elements of the form (2𝑡𝑚 + (1 + 2 + 22 + ⋯ + 2𝑝−2), 𝑑𝑙) in 𝑂and ≤ 𝑘 . Then 

if (𝑚 − 𝑛 − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0  implies (𝑟, 𝑠) ∈ 𝑂 .The condition (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0is taken because 

between (𝑎, 𝑏) and (𝑟, 𝑠) if there are 𝑚 + 1 elements whose positions are greater than 𝑏 or 𝑠 then they will not 

be adjacent. Since 𝑛(ℎ) gives the number of elements belonging to level > 𝑝  so 𝑛(ℎ) is the sum of those  

elements which occupy higher position than 𝑠. ∑ 𝑟𝑡𝑡≤𝑘 gives the sum of those elements which may occupy higher 

position than 𝑠 because 𝑟𝑡 is the number of elements of the form (2𝑡𝑚 + 1 + 2 + 22 + ⋯ + 2𝑝−2, 𝑑𝑙) in 𝑂. 

Since the elements of 𝑂 are belonging to level 𝑝  set and any element of level 𝑝 set can be expressed as (2𝑝 𝑞 +

(1 + 2 + 22 + ⋯ + 2𝑝−2) ,𝑑𝑥[5] so it  simplified to 2𝑡𝑚 + (1 + 2 + 22 + ⋯ + 2𝑝−2) . As 𝑡 increases their 

position decreases in level p set which can be said with the help of theorem 2.5 and 2.7. Thus if (𝑚 − 𝑛(ℎ) −

∑ 𝑟𝑡 )𝑡≤𝑘 > 0 that means  we are sure that  there does not exist 𝑚 + 1 elements which occupy greater position 

than 𝑠  and hence (𝑟, 𝑠) will be adjacent with (𝑎, 𝑏) 

if  (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 < 0 we are not sure whether the element (𝑟, 𝑠) will be adjacent with (𝑎, 𝑏).At that 

time we may take help of theorem 2.2 , 2.4, 2.5,2.6, 2.7. Hence the theorem. 
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However if 𝐷 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 𝑚 + 3, 𝑚 + 5, … ,2𝑚 + 1}thenafter getting (𝑟, 𝑠) we can add the 

element in the set 𝑂 and a new set 𝑂 can be formed and again 𝑟 will be taken from the set 𝐷. Thus we can 

continue the process. An algorithm based on this can be generated in the computer . 

 

Theorem 2.16:Let  (𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚) and be an element of  level 𝑞[Dutta 1] set of 𝑉𝑛 . For < 𝑞 , let 

𝑂 = {(𝑎 + 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5 … (𝑚 + 1)} ..Let 𝑟 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚  {𝑎 + 2𝑝−1𝑡 , 𝑡 = 𝑚 + 3, 𝑚 + 5, … , 2𝑚 +

1}such that   (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0, where 𝑟𝑡 is the number of elements of the form 2𝑡𝑚 + (1 + 2 + 22 +

⋯ + 2𝑝−2) in 𝑂 and 𝑡 ≤ 𝑘and let ℎ = {(𝑎 + 2𝑝−1𝑡, 𝑑𝑡), 𝑡 = 2,4,6, … 𝑟}  and 𝑛(ℎ) is the cardinality of the set ℎ 

then (𝑟, 𝑠) will be adjacent with (𝑎, 𝑏) and 𝑚 is even. 

 

Proof: Exactly in a similar way like theorem 9we can say that the elements of 𝑂 = {(𝑎 + 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 =

1,3,5 … (𝑚 + 1)} are adjacent with (𝑟, 𝑠) and we form the set  𝐷 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 𝑚 + 3, 𝑚 +

5, … ,2𝑚 + 1}. 

       Let (𝑟, 𝑠) ∈ 𝐷 such that 𝑟 is the smallest integer. Let 𝑛(ℎ)  be the number of  elements belonging to level >

𝑝  between  𝑎 + 2𝑝−1 to 𝑟  . Let 𝑘 be the greatest positive integer such that 𝑟 = 2𝑘𝑚 + (1 + 2 + 22 + ⋯ +

2𝑝−2) . Let 𝑟𝑡 be the number of elements of the form (2𝑡𝑚 + (1 + 2 + 22 + ⋯ + 2𝑝−2), 𝑑𝑙) in 𝑂and ≤ 𝑘 . Then 

if (𝑚 − 𝑛 − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0implies (𝑟, 𝑠) ∈ 𝑂 . 

If  (𝑚 − 𝑛 − ∑ 𝑟𝑡  )𝑡≤𝑘 < 0 At that time we may take help of theorem 2.2, 2.4, 2.5, 2.6, 2.7 

 

Theorem 2.17:Let  (𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚) where 𝑚 is an odd integer. and (𝑎, 𝑏)be  an element of  level 𝑞 

set of 𝑉𝑛For 𝑝 < 𝑞 , let 𝑂 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5 … 𝑚} ..Let 𝑟 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  {𝑎 − 2𝑝−1𝑡 , 𝑡 = 𝑚 +

2, 𝑚 + 4, … , 2𝑚 + 1}  such that   (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0, where  𝑟𝑡 is the number of elements of the form   

2𝑡𝑚 + (1 + 2 + 22 + ⋯ + 2𝑝−2) in 𝑂 and 𝑡 ≤ 𝑘 and let ℎ = {(𝑎 − 2𝑝−1𝑡, 𝑑𝑡), 𝑡 = 2,4,6, … 𝑠}and 𝑛(ℎ) gives 

the cardinality of the set ℎwhere 𝑎 − 2𝑝−1𝑠 = 𝑟 then (𝑟, 𝑠) will be adjacent with (𝑎, 𝑏) and 𝑚 is odd. 

 

Proof:  Let  (𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚)  and be an element of  level𝑞 set of 𝑉𝑛 .let𝑂 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 =

1,3,5 … 𝑚} and 𝑚 is odd. We claim that elements of 𝑂 are adjacent with (𝑎, 𝑏) because  𝑚 is odd implies  
𝑚+1

2
  

elements are in level 𝑝 set and 
𝑚−1

2
 elements are in level > 𝑝. But 𝑎 − 2𝑝−1(𝑚 + 1) is in  level greater than p 

set. So 𝑎 − 2𝑝−1 (𝑚 + 2) is in level 𝑝 set. But 𝑎 − 2𝑝−1 (𝑚 + 1) is in level > 𝑝. So when  𝑚 is odd and  𝑥 ≤

𝑎 − 2𝑝−1(𝑚 + 2) then (𝑥, 𝑙) may or may not be adjacent with (𝑎, 𝑏) .When  𝑚 is odd the following two sets we 

are getting 

𝑂 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5, … 𝑚) }and𝐷 = {(𝑎 − 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 𝑚 + 2 , 𝑚 + 4, … ,2𝑚 + 1} 

The elements of 𝑂 are adjacent with (𝑎, 𝑏)but the elements of 𝐷 are to be checked whether they are adjacent 

with (𝑎, 𝑏) or not. 

Exactly in a similar way we can say the possible condition is (𝑚 − 𝑛 − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0. 

 

Theorem 2.18: 

Let  (𝑎, 𝑏) ∈ 𝐺𝑛,𝑚 = (𝑉𝑛 , 𝐸𝑛,𝑚) where 𝑚 is an odd integer  and(𝑎, 𝑏)be  an element of  level 𝑞 set of 𝑉𝑛  . For 

𝑝 < 𝑞let = {(𝑎 + 2𝑝−1𝑡 , 𝑑𝑡), 𝑡 = 1,3,5 … 𝑚} ..Let 𝑟 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  {𝑎 − 2𝑝−1𝑡 , 𝑡 = 𝑚 + 2, 𝑚 + 4, … , 2𝑚 + 1}  

such that   (𝑚 − 𝑛(ℎ) − ∑ 𝑟𝑡  )𝑡≤𝑘 > 0, where  𝑟𝑡 is the number of elements of the form   2𝑡𝑚 + (1 + 2 + 22 +

⋯ + 2𝑝−2) in 𝑂 and 𝑡 ≤ 𝑘 and let ℎ = {(𝑎 + 2𝑝−1𝑡, 𝑑𝑡), 𝑡 = 2,4,6, … 𝑟} then (𝑟, 𝑠) will be adjacent with (𝑎, 𝑏) 

and 𝑚 is odd. 

 

Proof:Same as theorem 2.16. 
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