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Abstract 

Steady two-dimensional stagnation-point flow of an incompressible viscous electrically con- ducting fluid over 

a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to 

the distance from the stagnation-point. Using similarity variables, the governing partial differential equations are 

transformed into a set of non-dimensional ordinary differential equations. These equations are then solved 

numerically using Spline collocation method. In the present reported work the effect of magnetic field parameter 

on flow have been discussed. 
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1. Introduction

Flow of an incompressible viscous fluid over a stretching surface has an important bearing on several 

technological processes. For example in the extrusion of a polymer in a melt-spinning process, the 

extrudate from the die is generally drawn and simultaneoulsy stretched into a sheet which is then 

solidified through quenching or gradual cooling by direct contact with water. Some examples are in 

the glass blowing, the cooling and/or drying of papers and textiles, the extrusion of a polymer in a 

melt-spinning process, metals and plastics, continuous casting and spinning of fibers, etc. Crane [1] 

was the first who studied the two-dimensional steady flow of an incompressible viscous fluid caused 

by a linearly stretching plate and obtained an exact solution in closed analyticalform. Since then, 

many authors have studied various aspects of this problem, such as Chiam [2], Mahapatra and Gupta 

[3], Ishak et al. [4,5], etc., who have studied the flow behaviors due to a stretching sheet in the 

presence of magnetic field. 

2. Mathematical formulation  

Consider the two-dimensional steady flow of an  incompressible viscous electrically conduct- ing 

fluid (with electrical conductivity   ) near  a  stagnation-point at a surface coinciding  with the plane 

y = 0, the flow being confined to y  > 0. Two equal and opposite forces are intro- duced along the z-

axis (Fig. 1) so that the wall is stretched keeping the origin fixed, and a uni- form magnetic field 0B  is 

imposed along y-axis. 

 

Fig. 1 : A sketch of physical problem 
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The MHD equations for steady two-dimensional stagnation-point flow in the boundary layer over the 

stretching surface are, in the usual notation, 

0 
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                                               
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where the induced magnetic field is neglected  which is justified for MHD flow at small magnetic 

Reynolds numbers [6]). It is also assumed that the external electric field is zero and the electric field 

due to polarization of charges is negligible. In (2), U(x) stands for the stagnation-point velocity in the 

inviscid free stream. 

The appropriate boundary conditions are 

( )

,  0 at 0

 as 

u cx v y

u U x ax y

= = =

→ = →
      (3)     

where c and a are constants with c > 0 and a > 0. It may be noted that the constant a is proportional to 

the free stream velocity far away from the stretching surface. A little inspection shows that Eqs. (1) 

and (2) along with the boundary conditions (3) and (4) admit of similarity solution of the form. 
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 and the primedenotes differentiation wrt    Clearly with (5), Eq. (1) is identically 

satisfied. Substituting (5) in (2), we get  
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where M is the Hartmann number given by 
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The boundary conditions for (6) follow from (3), (4) and (5) as 

( ) ( ) ( )' '0 0, 0 1,
a

f f f
c

= =  =                    (8) 

Here analyse flow behavior for different values for 
a

c
.  
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3. Quartic Spline Blue method 

For three points boundary value problems are 

Let ( )is x be quartic spline in  1,i ix x−  

 Conditions for natural splines are  

( )is x Almost quartic in each subinterval  1,i ix x−  

( )   , for  i = 0,1,2,........,n.i i is x y=   ' '' '''
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Here spline third derivative must be linear in
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Where 1i i ih x x −= −   and ''' '''( )i is x y=   

Integrate (3.1), twice with respect to x . 
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Where use ' '

1 1( )i i is x y− −=  and ' '( )i i is x y=  

constants ic   and id  as follows 
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    (3.2)                           

Integrate (3.2), once with respect to x. 
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Case (i)  1
a

c
  

To obtain the spline solution, we begin with a assume function 
2( ) 0.25f   = − +   which satisfy 

given boundary conditions (8). To find the solution of   equation (6) along with boundary conditions 

(8). First we use 
2( ) 0.25f   = − +  and (6) in (3.5) and 0.1h = , we gate different values of '

iy  

for 1,2,3,4.i =   
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To find the final solution we use (3.6) for different values of 1,2,3,4i =  respectively, equations as 

follows 
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To substitute '

iy  and '''

iy  for 0.1h = in (6). We have four unknown and four equations. Solve those 

equations using Matlab. We get solution graphs as follows:   

 

 

 

 

Fig. 2: Normal velocity profile for various values of M                                                                           

 

 

Fig. 3: Horizontal velocity profile for various values of M        
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Case (ii & iii)  1 and 1
a a

c c
 =  

To obtain the spline solution, begin with a assume function 
2( ) 0.25f   = +   and ( )f  = which 

satisfy given boundary conditions (8).  

We get solution graphs as follows:   

 

Fig. 4: Normal velocity profile for various values of M                                                                           

 

 

Fig. 5: Normal velocity profile for various values of M     
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Fig. 6: Variation of ( )f  with   for various cases of 

a

c
with fix M.    

 

 

Fig. 7: Variation of ( )f  with   for various cases of 
a

c
<1 with fix M.    

 

Fig. 8: Variation of ( )f  with   for various cases of 
a

c
>1 with fix M.    
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4. Result and Discussion: 

From figures  (1) to (5), it shows that, there is a significant impact of magnetic field on the 

displacement profile of the flow. In all  the cases of a/c, we can see here that Normal and Horizontal 

velocity profile increase as increase in Magnetic parameter. Similarly from figure (6) to figure (8), 

velocity profile also increase as increase the value of a/c. Comparison of velocity profile in all cases 

given in figures (6-8). 

5. Conclusion 

We find the generalization of blue method for third order problem and solved the problem using blue 

technique. The beauty of this method is no need to convert nonlinear problem into linear form, we can 

solve directly in nonlinear form. Thus researcher are able to solve such type of problems using blue 

method without convert nonlinear problem into linear form. In given problem, it can be conclude  that 

magnetic parameter is directly proportional to velocity and displacement. Velocity profile is also 

directly proportionl to the values of a/c. 
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