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Abstract

Steady two-dimensional stagnation-point flow of an incompressible viscous electrically con- ducting fluid over
a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to
the distance from the stagnation-point. Using similarity variables, the governing partial differential equations are
transformed into a set of non-dimensional ordinary differential equations. These equations are then solved
numerically using Spline collocation method. In the present reported work the effect of magnetic field parameter
on flow have been discussed.
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1. Introduction

Flow of an incompressible viscous fluid over a stretching surface has an important bearing on several
technological processes. For example in the extrusion of a polymer in a melt-spinning process, the
extrudate from the die is generally drawn and simultaneoulsy stretched into a sheet which is then
solidified through quenching or gradual cooling by direct contact with water. Some examples are in
the glass blowing, the cooling and/or drying of papers and textiles, the extrusion of a polymer in a
melt-spinning process, metals and plastics, continuous casting and spinning of fibers, etc. Crane [1]
was the first who studied the two-dimensional steady flow of an incompressible viscous fluid caused
by a linearly stretching plate and obtained an exact solution in closed analyticalform. Since then,
many authors have studied various aspects of this problem, such as Chiam [2], Mahapatra and Gupta
[3], Ishak et al. [4,5], etc., who have studied the flow behaviors due to a stretching sheet in the
presence of magnetic field.

2. Mathematical formulation

Consider the two-dimensional steady flow of an incompressible viscous electrically conduct- ing
fluid (with electrical conductivity o ) near a stagnation-point at a surface coinciding with the plane
y = 0, the flow being confined to y > 0. Two equal and opposite forces are intro- duced along the z-

axis (Fig. 1) so that the wall is stretched keeping the origin fixed, and a uni- form magnetic field B, is
imposed along y-axis.

u=cx

Regian of non-zero
warticlty

Fig. 1 : A sketch of physical problem
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The MHD equations for steady two-dimensional stagnation-point flow in the boundary layer over the
stretching surface are, in the usual notation,

ou ov
—+—=0 (1)
ox oy

2 2
u@.}.va_uzuau 6_U+UBO

—+V— U —-u) (2)
ox oy OX oy P

where the induced magnetic field is neglected which is justified for MHD flow at small magnetic
Reynolds numbers [6]). It is also assumed that the external electric field is zero and the electric field
due to polarization of charges is negligible. In (2), U(x) stands for the stagnation-point velocity in the
inviscid free stream.

The appropriate boundary conditions are

u=cx,v=0aty=0

u—-U(x)=axasy > )

where ¢ and a are constants with ¢ > 0 and a > 0. It may be noted that the constant a is proportional to
the free stream velocity far away from the stretching surface. A little inspection shows that Egs. (1)
and (2) along with the boundary conditions (3) and (4) admit of similarity solution of the form.

u(x,y)=cxf (n)

: (5)
v(x.y)=~(cv)z f(n)

2
where 77 = y(gj and the primedenotes differentiation wrt 77 Clearly with (5), Eq. (1) is identically
Vv

satisfied. Substituting (5) in (2), we get
f'"(ry)+f(n)f"—f'z(n)—sz'(n)+M2%+i—§=0 (6)

where M is the Hartmann number given by
1
2
M = B, (iJ (7)
pC
The boundary conditions for (6) follow from (3), (4) and (5) as

£(0)=0,f (0)=1 f (c0)= (8)

oo

. . a
Here analyse flow behavior for different values for — .
o
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3. Quartic Spline Blue method

For three points boundary value problems are
Let s;(X) be quartic spline in [X_;, %]
Conditions for natural splines are

s, (X) Almost quartic in each subinterval [X,_, %]

ss(x)=y; ,for i=0,1.2,... N 5,6 (%), 8 (%), s"(x) are continuous in [ x, x, |-
5 (%) =s; (%,) =0.

|~

Here spline third derivative must be linear in[xi‘l’xi] 8 (%) = —[(%—X) Yo + (%)Y, ] (3.1)

j

Where hy =x —%_, and s (x)=Y;

Integrate (3.1), twice with respectto X.

SI(X):H 6

l{(xi‘x) y.,;‘+(x‘g”) y.‘}+c.(x.—x)+d.(x—x.1).

Where use s; (X, ,)=V,, and s, (X)=Y;

constants C; and d; as follows

iy o) g L
(I h yi—l 6 yi—l i h yi 6 yi
' and |

So

P A -x) . (x=x4) .
s (x) = h [ 5 Yia t 6 Yi ]

(o k2 o) (3.2)
+ h [yi—l 5 Yia J(Xi X) +

(. h* )
H(yi_?yl j(x Xi_1)-

Integrate (3.2), once with respect to x.
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1( . h* L) (%—-X)? (3.3)
_H(yi—l Y Yia ] > +

(0 h? ) (x=%,)°
+H[yi ?ylj 5ot

Takes, (X ;) =Y. ,, We get constants €,

3
Where € =y, , ) Yia 3 Yia-

Substitute €, in (3.3),

5,(X) = l[_(xi—x)4 _ "*+(X—Xifl)4 yi_,,]

h 20 24

(.« h* ) (% —X)?
_H(YM _?yi—l ] 5 + 3.4)

1( 0 h? ) (x=%,)
+—| Yy — i [
h.[y' 6’ ] 2

h®* . h

+Yia Y Yia t 5 yHI-

For 5" (x7)=s,, (%)

2

Yia —2Yi +Yiy :g(ym +4y, +Yi,) (3.5)

Fors;(67) =8, (%") yiy -y, = _h(yil + yi—ll)+2_z By -¥) (36

2

Case (i) a <1
c

To obtain the spline solution, we begin with a assume function f (7) =—0.251° +7 which satisfy
given boundary conditions (8). To find the solution of equation (6) along with boundary conditions
(8). First we use f(77) =—-0.25n%+7 and (6) in (3.5) and h=0.1, we gate different values of y,

for i=1,2,3,4.
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To find the final solution we use (3.6) for different values of i =1,2,3,4 respectively, equations as

h. . - h?
Yo— V1 :_E[y1 + yo]+ﬂ[_y1 +3yo ]
- ——h[ T+ ']+h—3[— "+3 ]
follows Yi—Y.= 5 Y, t Y Y Y, Y1 (3.7)
h_ . - h?
Y= Y; Z_E[ys +y2]+ﬂ[_y3 +3Y, ]

h, . - h®
Ys =Y, Z_E[y4 + y3]+ﬂ[_y4 +3Y, 1

To substitute y, and y, for h=0.1in (6). We have four unknown and four equations. Solve those
equations using Matlab. We get solution graphs as follows:
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Fig. 2: Normal velocity profile for various values of M
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Fig. 3: Horizontal velocity profile for various values of M
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Case (ii & iii) 2>1and 2=1
C C

To obtain the spline solution, begin with a assume function f (77) =0.257% +7 and f (;7) = 7 which
satisfy given boundary conditions (8).

We get solution graphs as follows:
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Fig. 4: Normal velocity profile for various values of M
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Fig. 5: Normal velocity profile for various values of M
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Fig. 7: Variation of f (77) with 77 for various cases of a <1 with fix M.
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Fig. 8: Variation of f (17)with 7 for various cases of 2 51 with fix M.
c
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4. Result and Discussion:

From figures (1) to (5), it shows that, there is a significant impact of magnetic field on the
displacement profile of the flow. In all the cases of a/c, we can see here that Normal and Horizontal
velocity profile increase as increase in Magnetic parameter. Similarly from figure (6) to figure (8),
velocity profile also increase as increase the value of a/c. Comparison of velocity profile in all cases
given in figures (6-8).

5. Conclusion

We find the generalization of blue method for third order problem and solved the problem using blue
technique. The beauty of this method is no need to convert nonlinear problem into linear form, we can
solve directly in nonlinear form. Thus researcher are able to solve such type of problems using blue
method without convert nonlinear problem into linear form. In given problem, it can be conclude that

magnetic parameter is directly proportional to velocity and displacement. Velocity profile is also
directly proportionl to the values of a/c.
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