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Abstract:  In general, Digital Signal processors are designed with Harvard architecture which in turn comprises a special block 

called Multiply and Accumulate unit (MAC).  The speed improvement of any processor can be done by improving the speed 

of the dedicated Multiply and Accumulate unit. Offset binary coding based Distributed Arithmetic (DA) is a compelling 

technique that improves the area, delay, and power trade-off in designing of MAC core, and which in-turn adds the benefits to 

digital signal processor design. Also introduced the mathematical concepts which lead to offset based Distributed arithmetic 

are shown below. The different optimization techniques of offset based Distributed Arithmetic based MAC core is synthesized 

and implemented for efficient implementation of inner product generation. Implementation of different Offset based distributed 

architectures such as LUT  based four-term & two-term, single LUT inner product computations are compared with LUT-less 

based architecture are done. The conclusion drawn from this research work is demonstrated on 16-bit MAC cores using offset 

binary coding distributed arithmetic architectures using Xilinx ISE 14.7 and verified functionality using simulation results. The 

design is synthesized to know the area, delay, power and energy issues. The offsent based Distributed Airthmetic is compared 

with its counterparts. Based on the analysis it is found that LUT-LESS can save the power delay product of 7.33% over LUT 

based when the worst case margin is considered with 1.754% of area reduction. 

Keywords:Offset Binary coding (OBC), Distributed Arithmetic (DA),Look up Table (LUT)     Adder based (LUT-LESS) 

 

1. Introduction 

System on Chip/System on a chip(SOC) is an IC that integrates most of the blocks on a single chip. Any general 

SOC architecture includes DSP block, Memory elements, and Input / Output blocks. A dedicated DSP core is used 

inside the SOC for real-time Computing purposes. Since Dedicated DSP block usually gives good performance 

efficiency than that of a general-purpose processor. In this increasing technology, DSPs are the fastest Digital 

signal Processor is an example of Harvard Architecture which fetches data and program instruction parallelly can 

be suited in many real-time applications such as digital broadcast, video and signal processing, image processing, 

communication systems & many more. Major DSP manufacturers are Texas, Analog Devices, and Motorola are 

designing dedicated DSPs for the application intended using Harvard Architecture as shown in figure 1. The MAC, 

or "Multiply and Accumulate [7]" unit core is a major kernel to perform multiplication operations in DSP systems. 

Let X, Y are the inputs, the basic MAC operation includes Z = Z + x*y, where Z is an accumulator unit as shown 

in figure 2. This is the most fundamental operation used in many DSP architectures.The future MAC in DSP needs 

to perform more computational functions to engage in real-time signal processing operations of the complex 

applications. 

 

 

                                                   Figure 1:Hardvard Architecture 
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The MAC, or "Multiply and accumulate" unit core is a major kernel to perform multiplication operations in 

DSP systems. Let X, Y are the inputs, the basic MAC operation includes Z = Z + x*y, where Z  is an accumulator 

unit as shown in figure 2. This is the most fundamental operation used in many DSP architectures.  The future 

MAC in DSP needs to perform more computational functions to engage in real-time signal processing operations 

of the complex applications. 

 

 
Figure 2: Multiply and Accumulate Core 

 

 

2. Existing Distributed Arithmetic 

 

In Existing DA,computationInner product  between two inputs X &Y can be done using precomputed LUT’s. 

. This can be well suited for both ASIC and FPGA based implementations. The Distributed Arithmetic [5] based 

MAC core can be expressed using mathematical concepts as shown below. 

 

Algorithm: 

Suppose that X is the vector of input samples and X is a constant vector of input coefficient, corresponding to 

the MAC unit. Vector X and Y each consist of M elements XK and YK. The dot product Z of X and Y can be 

written as 

Consider the following sum of product:                         

𝑍 = ∑ 𝑋𝑘𝑌 𝑘   … … … (1)

𝑘

𝑘=1

 

 

• Let 𝑌𝑘 be an N-bit scaled two’s complement number. In other words, 

|𝑌𝑘 | < 1 

𝑌𝑘 : {𝑏𝑘0,𝑏𝑘1,𝑏𝑘2………,𝑏𝑘(𝑛−1) 

Where 𝑏𝑘0 is the sign bit 

• b. We can express 𝑋𝑘 as 

𝑌𝑘 =  −𝑏𝑘0 + ∑ 𝑏𝑘𝑛2−𝑛

𝑁−1

𝑛=1

                  … . . (2) 

 

c. Substituting  (2)  in (1), 

𝑍 = ∑ 𝑋𝑘

𝑘

𝑘=1

[−𝑏𝑘0 + ∑ 𝑏𝑘𝑛

𝑁−1

𝑛=1

2−𝑛] 

𝑍 = ∑(𝑏𝑘𝑛

𝑘

𝑘=1

∗ 𝑋𝑘)  + ∑ ∑(𝑋𝑘 ∗ 𝑏𝑘𝑛)          . . (3)

𝑁−1

𝑛=1

𝑘

𝑘=1
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𝑍 = − ∑(𝑏𝑘0

𝑘

𝑘=1

∗  𝑋𝑘) + ∑[(𝑋𝑘

𝑘

𝑘=1

∗ 𝑏𝑘1)2−1 + (𝑋𝑘 ∗ 𝑏𝑘2)2−2 + ⋯ + (𝑋𝑘 ∗ 𝑏𝑘(𝑁−1))2−(𝑁−1) ] 

𝑍 = −[𝑏10 ∗ 𝑋1 + 𝑏20 ∗ 𝑋2 + 𝑏𝑘0 ∗ 𝑋𝑘] 

   +[(𝑏11 ∗ 𝑋1)2−1 + (𝑏12 ∗ 𝑋1)2−2 + ⋯ + (𝑏1(𝑁−1) ∗ 𝑋1)2−(𝑁−1)] 

   +[(𝑏21 ∗ 𝑋2)2−1 + (𝑏22 ∗ 𝑋2)2−2 + ⋯ + (𝑏2(𝑁−1) ∗ 𝑋2)2−(𝑁−1)] 

                                    …… 

        +[(𝑏𝑘1 ∗ 𝑋𝑘)2−1 + (𝑏𝑘2 ∗ 𝑋𝑘)2−2 + ⋯ + (𝑏𝑘(𝑁−1) ∗ 𝑋𝑘)2−(𝑁−1)] 

 

𝑍 = −[𝑏10 ∗ 𝑋1 + 𝑏20 ∗ 𝑋2 + 𝑏𝑘0 ∗ 𝐴𝑋𝑘] 
      +[(𝑏11 ∗ 𝑋1) + (𝑏21 ∗ 𝑋2) + ⋯ + (𝑏𝑘1 ∗ 𝑋)]2−1 

       +[(𝑏12 ∗ 𝑋1) + (𝑏22 ∗ 𝑋2) + ⋯ + (𝑏𝑘2 ∗ 𝑋)]2−1 

 ……. 

 +[(𝑏1(𝑁−1) ∗ 𝑋1) + (𝑏2(𝑁−1) ∗ 𝑋2) + ⋯ + (𝑏𝑘(𝑁−1) ∗ 𝑋𝑘)]2−(𝑁−1) 

 

𝑍 = − ∑(𝑏𝑘0) ∗ 𝑋𝑘

𝑘

𝑘=1

+ ∑[

𝑁−1

𝑛=1

𝑏1𝑛 ∗ 𝑋𝑘 + 𝑏2𝑛 ∗ 𝑋2 + ⋯ + 𝑏𝑘𝑛 ∗ 𝐴𝑋𝑘]2−𝑛 

 

𝑍 = − ∑ 𝑋𝑘

𝑘

𝑘=1

∗ (𝑏𝑘0) + ∑[∑ 𝑋𝑘

𝑘

𝑘=1

𝑁−1

𝑛=1

∗ 𝑏𝑘𝑛]2−𝑛                 … . (4) 

 

Consider the equation (4) rewritten as: 

𝑍 = ∑ [∑ 𝑋𝑘

𝑘

𝑘=1

𝑏 ]

𝑁−1

𝑛=1

2−𝑛 + ∑ 𝑋𝑘

𝑘

𝑘=1

(−𝑏𝑘0) 

                ∎        [∑ 𝑋𝑘

𝑘

𝑘=1

𝑏𝑘𝑛]          has only  2k  possible values 

        ∎        [∑ 𝑋𝑘

𝑘

𝑘=1

𝑏𝑘𝑛] ℎ𝑎𝑠𝑜𝑛𝑙𝑦 2𝑘𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑣𝑎𝑙𝑢𝑒𝑠 

                ∎      With the sign bit as an input,we can store it in a ROM of size=2*2𝑘 

 

To realize the inner product computation, the conventional DA uses a LUT-based architecture as shown in 

Figure 3 .It includes 3 blocks mainly 

1)Input Data Section 

2)LUT section 

3)Accumulator Section 

 
Figure 3: Conventional Distributed Arithmetic MAC core 
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In the data section, the bits of inputs are ({X0, X1,···, Xi}) are applied to create LUT addresses. The contents 

in LUT follow accumulator which in turn includes adder and register fork rising from to N-1as appeared in 

Equation (3). Several updating shifters within the accumulator can take place with previous output is to create 

progressive scaling with powers of two. After N cycles, compared to the bit-width of input vector X, the ultimate 

esteem of yield Z can be a final result as the result of the accumulation.  

 

 

The two limitations of using this DA are: 

1) This bit-serial multiplication design of LUT based DA gets to be a bottleneck when achieving the result for 

each clock cycle. 

2) Another issue with LUT-based DA is that its LUT measure (2K word) develops exponentially as K 

increments. As the number of inputs are growing further tends to increase the LUT entries. LUT Based DA speeds 

up the duplication preparation by pre-computing all conceivable values and putting away them in a LUT Section. 

 

3. Method 

 

Offset  Binary Coding method is based on a modified two's-complement representation of the values and 

reduces the  size of LUT by half. The OBC can be further extended, reducing the memory size in steps by factor 

of two from 2K to K in theory. However, this requires additional hardware in terms of adders and multiplexers, 

thus increasing the delay.  

Offset Binary Coding Algorithm: 

. 

𝑌𝑘 =
1

2
[𝑥𝑘 − (−𝑥𝑘)] 

 

𝑌𝑘 = −𝑏𝑘0 + ∑ 𝑏𝑘𝑛2−𝑛

𝑁−1

𝑛=1

                          … (5)  

Equation (5) is converted into 2’s complement 

−𝑌𝑘 = −𝑏𝑘0
̅̅ ̅̅ + ∑ 𝑏𝑘𝑛

̅̅ ̅̅̅

𝑁−1

𝑛=1

2−𝑛 + 2−(𝑁−1) 

𝑌𝑘 =
1

2
[−(𝑏𝑘0 − 𝑏𝑘0

̅̅ ̅̅ ) + ∑(𝑏𝑘𝑛 − 𝑏𝑘𝑛
̅̅ ̅̅̅)

𝑁−1

𝑛=1

2−𝑛 − 2−(𝑁−1)] 

▪ Define: Offset code 

𝑐𝑘𝑛 = {
𝑏𝑘𝑛 − 𝑏𝑘𝑛

̅̅ ̅̅̅         , 𝑛 ≠ 0

−(𝑏𝑘𝑛 − 𝑏𝑘𝑛
̅̅ ̅̅̅     , 𝑛 = 0

𝑤ℎ𝑒𝑟𝑒𝑐𝑘𝑛  ∈ {−1,1} 

▪ Finally 

𝑌𝑘 =
1

2
[∑ 𝑐𝑘𝑛2−𝑛

𝑁−1

𝑛=0

− 2−(𝑁−1)] 

Using the new 𝑥𝑘 we have 

𝑌𝑘 =
1

2
[∑ 𝑐𝑘𝑛2−𝑛

𝑁−1

𝑛=0

− 2−(𝑁−1)] 

▪ Substitute the new 𝑥𝑘 in 

 

𝑍 = ∑ 𝑋𝑘𝑌𝑘

𝑘

𝑘=1

 

𝑍 =
1

2
∑ 𝑋𝑘 [∑ 𝑐𝑘𝑛2−𝑛

𝑁−1

𝑛=0

− 2−(𝑁−1)]

𝑘

𝑘=1

 

𝑍 =
1

2
∑ ∑ 𝑋𝑘

𝑁−1

𝑛=0

𝑐𝑘𝑛2−𝑛 −
1

2
∑ 𝑋𝑘

𝑘

𝑘=1

2−(𝑁−1)

𝑘

𝑘=1

 

 

 

 
−

1

2
∑ 𝑋𝑘

𝑘

𝑘=1

2−(𝑁−1) 
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𝑍 = ∑
1

2

𝑁−1

𝑛=0

∑ 𝑋𝑘

𝑘

𝑘=1

𝑐𝑘𝑛2−𝑛                                                  … (6) 

 

 

If we let 

𝑄(𝑐1𝑛𝑐2𝑛𝑐3𝑛 … 𝑐𝑘𝑛) =
1

2
∑ 𝑋𝑘

𝑘

𝑘=1

𝑐𝑘𝑛 

 

 

 

 

 

𝑦 = ∑ 𝑄(𝑐1𝑛

𝑁−1

𝑛=0

𝑐2𝑛𝑐3𝑛 … 𝑐𝑘𝑛)2−𝑛 + 2−(𝑁−1)𝑄(0)     … . . (7)       

 

 
Figure 4: Offset Binary Coding Distributed Arithmetic MAC core                                                                            

 

It can be seen from the figure3 that Distributed Arithmetic, LUT section with N inputs have 2N entries  which 

takes different magnitude values, where as in figure 4, Offset Binary Coding architecture take the magnitude values 

with a sign which are still consistent with the statements as DA architecture. 

 

Let us have a look at how the OBC architecture works. The values stored in the LUT section are shown in the 

figure. For (0111) the output of LUT is -1/2(a0-a1-a2-a3) and for (1000) the output is -1/2(-a0+a1+a2+a3) . It can 

be noticed that the upper half of the LUT is the same as the lower half but with the sign reversed thereby the size 

can still reduce by half. When N clock cycles' accumulation is done, the architecture will give the final result for 

OBC computation. 

Various Techniques:  

The different optimization techniques of offset based Distributed Arithmetic based MAC core are synthesized 

and implemented using Xilinx ISE P5.8f.  

 

 

Two LUT OBC: 

For the given N term, the number of LUT entries  are 2N ( Single LUT). In Two LUT, each of LUT  

2N/2requires half compared with Single LUT but it requires an extra adder as shown in below figure. 

 

𝑄(0) =
1

2
∑ 𝑋𝑘

𝑘
𝑘=1         Constant 
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Figure 5: Offset Binary Coding Distributed Arithmetic MAC core using two LUT’s 

 

 

Four LUT OBC: 

For example, for N = 16 the LUT in the baseline implementation requires 65,536 (216) rows.  

 
Figure 6: Offset Binary Coding Distributed Arithmetic MAC core with Four LUT’s 

 

 

With 2-bank splitting the implementation requires two LUTs each with 256 (28) rows, which is still 

prohibitively large. Thus, for four LUT of N, the coefficients can be split into four banks.  

LUT-LESS OBC (ADDER based OBC):   

 

 
 

4. Experimental Results and Evaluation 

The simulation and synthesis of the above architectures are done using Xilinx ISE P5.8f. The results are shown 

below: 

 

 



Turkish Journal of Computer and Mathematics Education               Vol.12 No.11 (2021), 4739-4749 

                                                                                                                                        Research Article                                                                      

4745 
 

 
Simulation 1: OBC DA-based implementation of single LUT for inner-product computation 

Inputs = a0,a1,a2,a3 = 2,3,4,5 

ADDR  = 0011 

Out     =-(a0+a1-a2-a3)/2; = 2(0010) 

 sum    = Out+cin = 2+1 = 3(0011) 

Clk , clken =1 then z =0 else accumulation can be done 

 

 

 
 

Simulation 2: OBC DA-based implementation of a four-term LUT inner-product computation. 

 

Inputs = a0,a1,a2,a3 = 2,3,4,5 

ADDR  = 0011 

Out1 = -1/2(a0) =-1(0111) 

Out2 =-1/2(a1) = -2(1110) 

Out3 = -1/2(-a2) =2(0010) 

Out4 = -1/2(-a3) =2(0010) 

X = Out1+Out2 = -3(1101) 

Y = Out3+Out4 = 4(0100) 

Out     = X+Y = -3+4 =1(0001) 

 sum    = Out+cin = 1+1 = 2(0010) 

Clk , clken =1 then z =0 else accumation can be done 
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Simulation 3: OBC DA-based implementation of a two-term LUT inner-product computation. 

Inputs = a0,a1,a2,a3 = 2,3,4,5 

ADDR  = 0011 

Out1   = -(a0+a1) /2=-3(1101) 

Out2   = -(-a2-a3) = 4(0100) 

Out     = Out1+Out2= -3+4 = 1(0001) 

 sum    = Out+cin = 1+1 = 2(0010) 

Clk , clken =1 then z =0 else accumation can be done 

 

 
 

Simulation 4: OBC DA-based implementation of a LUT-LESS(Adder based) inner-product computation. 

Inputs = a0,a1,a2,a3 = 2,3,4,5 

ADDR  = 0011 

Out1 = -1/2(a0) =-1(0111) 

Out2 =-1/2(a1) = -2(1110) 

Out3 = -1/2(-a2) =2(0010) 

Out4 = -1/2(-a3) =2(0010) 

X = Out1+Out2 = -3(1101) 

Y = Out3+Out4 = 4(0100) 

Out     = X+Y = -3+4 =1(0001) 

 sum    = Out+cin = 1+1 = 2(0010) 

Clk , clken =1 then z =0 else accumation can be done 

Performance Analysis of Area 
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Here in OBC-DA architectures, comparison is done with four bank, two bank and adder based(LUT-

Less)architectures and compared. Among them adder based consumes less area among all types of other 

architectures. From the above chart adder based reduces area of 1.754% slices compared with conventional Single 

LUT based OBC.  

 

 
 

From the above chart adder based OBC-DA has 71.41 ns where as conventional OBC has a delay of 

76.2ns.so that delay consumption is decreased. 

 

 

 

 

 

 

OBC two lut OBC
four lut

OBC
adder

based OBC

 input lut's 264 281 228 224

 occupied slices 147 144 121 118

 bonded IOBs 38 38 38 38
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Fr om the above chart 

OBC-DA consumes increase in power of 7.14% compared with conventional  OBC-DA but the power delay 

product is saved by 7.333%. 

 

5. Results 

 

MAC is the most essential block which can be seen in most DSP Applications [2]. Offset binary coding based 

Distributed arithmetic plays a key role in implementing DSP functions in ASIC and FPGA devices. The proposed 

design relies on LUT based and LUT-Less based. In LUT based designs, partitioning the size of LUT leads to a 

trade-off between area and speed performance. LUT-Less implementation requires several cycles with adders to 

compute k bits of input data. The architectures are modelled in Verilog HDL and verified using Xilinx ISE. As 

there is a huge demand for DSP applications, in calculating the pre-computed SOP, the proposed Offset binary 

coding discussed can be used in high-speed DIP and DSP applications. From the charts, it is observed that LUT-

less based design has a less critical path over LUT based MAC core using OBC based DA. This work includes 

analysis of the area, delay, power, power-delay, and energy-delay products of LUT-Less based and LUT based 

four-term, two-term, and conventional OBC based DA MAC architectures. Finally, the power delay product of 

LUT-less is saved by 7.333% compared with conventional DA. 

 

6. Future work 

 

Researchers have many choices of flexibility in designing the desired LUT implementation also able to change 

the parameters for implementation. Also, low power techniques can be added to still reduce the power.     
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