
Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 2748- 2762

 Research Article

2748

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b , Dr. Divakar Yadav

a Assistant Professor, SRM Institute of Science & Technology, NCR Campus, Modinagar.
b Assistant Professor, Pranveer Singh Institute of Technology, Kanpur.
c Professor, Institute of Engineering & Technology, Lucknow.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 10 May 2021

Abstract: It is really a challenging effort to develop and verify the distributed fault tolerant system. This is because

of the communication primitives available for distributed system are not very strong. In Distributed systems

processes cooperate and communicate with each other by message exchange. Fault tolerant broadcast mechanisms

are must for the construction of the reliable Distributed system. We can achieve the fault tolerance by introducing

the Total and causal order broadcast. Use of formal approaches allows us to build fault tolerant distributed systems.

In this article, we introduce a systematic system development in which processes communicate through broadcast

and messages are exchanged using a total order broadcast mechanism. Total order broadcast primitives were

proposed to enable broadcasting system for checkpoint process and allow fault-tolerant co-operation in a

distributed network between the sites. We explain how an Event-B refinement-based methodology can be used

for the systematic creation of Checkpoint process using total order broadcast models. We introduce a model of

broadcasting system for total order and then ensure that the model maintains appropriate ordering attributes while

taking the checkpoints. Consequently, in a succession of refinement stages we illustrate how to accurately

integrate an abstract total order utilizing the concept of sequence number. This approach allows one to discharge

proof obligations due to consistency and refinement checking. To fulfil the proof obligations, it is necessary to

find out invariant which define the interconnection among the abstract total order and the process responsible for

it.

Keywords: Event-B, Formal Verification, Distributed systems, Recovery, Checkpoint, Total Order, Fault

Tolerant, Formal Specifications, Checkpoint Number, Formal Methods, Consistent State, Global State, Rodin

1. Introduction

Checkpointing is the method of saving the failure free state of process on to the stable storage and restart the

computation from that failure free state which was saved on the stable storage in the process of Rollback recovery

(Kim & Park, 1993). For the Rollback recovery, all the processes must be agreed on to some Consistent Global

Checkpoint to restart the computation (Manivannan, Netzer, & Singhal, 1997). To make the consensus on the

consistent global checkpoint, the processes have to communicate with each other through message passing. In

Distributed Systems the interaction among the processes is only through the exchange of messages because they

do not share memory and for the rollback recovery of the distributed system all the processes must form a global

state and that must be communicated to all the processes (Leu & Bhargava, 1988) (Bal Krishna Saraswat, D. Y.,

& Raghuraj Suryavanshi, 2018).

Implementation of distributed systems and applications are very hard. This is because of the communication

primitives available for the broadcast and may also be because of the inevitable concurrency in distributed system,

associated with the complexity of offering global control. This challenge would be significantly overcome by

depending on group communication primitive that delivers better assurances than conventional point-to-point

communication. The weakest group communication primitive is the Reliable Broadcast. In reliable broadcast, all

the processes make their consensus on the set of messages they deliver (Hadzilacos & Toueg, 1994). One of the

well-known communication primitives is Total Order Broadcast (Defago, Schiper, & Urban, 2004), which

guarantees that all such processes deliver messages to a group of processes in the same sequence. Total order

broadcast is a powerful primitive that plays a key role in the execution of state machine method, (also called active

replication) (Lamport, 1978) (Schneider, 1990). It is also shown that the use of Total Order Broadcast primitive

can improve the performance of the replicated databases (Pedone, Guerraoui, & Schiper, 1998) (Kemme, Pedone,

Alonso, Schiper, & Wiesmann, 2003).

Distributed system's reliability is a key design measure of success for building or upgrading established

distributed services. Reliability applies both to a system's resistance to different sorts of failure and its ability to

survive from them (Holliday, 2001). By displaying well-defined behaviors that support the recovery-friendly

operation, a process can be configured to be fault tolerant. In Order to ensure the reliability of distributed system

we need to ensure the reliability of each independent parameter or factors involved in distributed systems before

forecasting or determining the reliability of the whole system, and incorporating a consistent mechanism for

detecting faults and restoring faults to provide end users a smooth interaction (Ahmed & Wu, 2013).

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b, Dr. Divakar Yadav

2749

In this research article we are designing a robust checkpoint algorithm with the help of total order broadcast

primitive using Event-B. The main characteristics of Event-B include the use of set theory as a modeling language,

description of various degrees of abstraction using refinement, and the use of mathematical proof to validate

uniformity among various degrees of refinement. Event-B is a successor of B Method (J. Abrial, 1996) and action

system (Back, 1989). We are using the Rodin (J.-R. Abrial, 2007) (J.-R. Abrial et al., 2010) (J.-R. Abrial, Butler,

Hallerstede, & Voisin, 2006), which is a model creation tool for Event-B that is open source and expandable.

2. Preliminaries

In this section we are specifying about the process failures, and the message ordering properties available for

distributed system. We are also defining some B-notations which are used throughout our model.

2.1 Process Failures

There are many types of failures that are supposed to take place in the Distributed System. A general class of

failure models are acknowledged below:

• Crash failures: If a system fails, it will cease to work indefinitely. It implies that it avoids writing,

distributing, or accepting some response from any operation.

• Omission failures: Some activities, such as exchange of messages, are omitted when omission failure

occurs.

• Timing failures: If a mechanism contradicts the synchronization presumption, it is called a timing fault.

In asynchronous structures, this form of error is meaningless.

• Byzantine failures: It is the most common class of failure. Any illogical actions are permitted byzantine

element. For example, A faulty mechanism may alter the message content, repeat messages, submit spam

messages, or even attempt to maliciously break down the whole system.

A correct process is described as a process which does not express any of the shortcomings listed above.

2.2 Ordering Properties

The Reliable Broadcast is the weakest class of the broadcast technique available. Hadzilacos and Toueg

(Hadzilacos & Toueg, 1994) described the properties of reliable broadcast as-

1. Agreement: There is a mutual agreement between all the authenticated process which are defining the

system on the set of messages they will deliver to each other.

2. Validity: Each and every message will be delivered if it is broadcasted by the authenticated process.

3. Integrity: No fake or fraudulent message will ever be delivered.

The properties defined for the Reliable Broadcast is sufficient for most of the applications, where ordering of

messages is not important. But there are many applications where the ordering of messages is very crucial for the

fault tolerant and reliable functioning of the system. There are many broadcast primitives available for the ordering

of messages.

The FIFO Broadcast technique is the same as Reliable Broadcast with the addition of an ordering

characteristic, that messages will be delivered in the same order as they were broadcasted. But this definition is

also having a very fine problem. Suppose a process pp broadcasted three messages, namely mm1, mm2, and mm3,

in that order, and an authenticated process pq delivers the message mm1, then mm3, but the process never delivers

message mm2. This is possible as while broadcasting the message mm2, the process pp is suffering from the

transient failure (Hadzilacos & Toueg, 1994).

Every message has a context without which we can wrongly interpret the message delivered. In some cases,

the casual precedence of the messages is important. FIFO broadcast technique is sufficient when the context of

message mm is related to the message which was broadcasted by the same process before broadcasting the message

mm (Hadzilacos & Toueg, 1994). But if the context of the message mm1, which is broadcasted by the process pp,

is related to the context of the message mm2, which was delivered to the process pp before broadcasting the

message mm1. Then FIFO broadcast order will no longer work (Baldoni, Mostefaoui, & Raynal, 1996).

Causal Order broadcast technique is the stronger form of the FIFO Order broadcast by setting up a causal

precedence relation message broadcast and delivery (Pedone & Schiper, 1999). Following the Causal Precedence

relation between the message broadcast and delivery, the Causal Order broadcast can be defined as, “If the

broadcast of a message m causally precedes the broadcast of a message m`, then no correct process delivers m`

unless it has previously delivered m (Hadzilacos & Toueg, 1994).”

Every message exchanged in the distributed system is not causally related with the broadcast and delivery of

the message, and Causal Order broadcast does not imply any order of delivery on these messages (Cristian, Aghili,

Strong, & Dolev, 1995). Being more precise, the two correct processes may be delivered the messages in different

order. This type of discord between the delivery order of the messages is not at all acceptable in some application

(Luan & Gligor, 1990). To avoid such type of vulnerabilities, Total Order broadcast ensures that all the processes

deliver all the messages in same order. Total Order broadcast can be defined as “If two correct process p and q

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

2750

both delivers messages mm and mm`, then q delivers mm before mm' if and only if p delivers mm before mm'

(Hadzilacos & Toueg, 1994).

2.3 B – Notation

Here we annotate some B notations that are majorly used by our model. A more descriptive justification of these

notations is defined in (J. Abrial, 1996; Boulanger, 2014). We are assuming that there are two sets named A & B,

then the sign ↔ defines set of relations between A and B as
𝐴 ↔ 𝐵 = ℙ(𝐴 × 𝐵)

here × is defined as the Cartesian product of sets A and B. When there is a mapping of elements like a ∈ 𝐴  and

𝑏 ∈ 𝐵 in a relation R ∈ A ↔ B, this is denoted as 𝑎 ↦ 𝑏. We define the domain of a relation 𝑅 ∈ 𝐴 ↔ 𝐵, is

set of elements of A that R relates to some set of elements in B is denoted as

𝑑𝑜𝑚(𝑅) = {𝑎 | 𝑎 ∈ 𝐴 ∧ ∃ 𝑏. (𝑏 ∈ 𝐵 ∧ 𝑎 ↦ 𝑏 ∈ 𝑅)}

Additionally, the range of relation 𝑅 ∈ 𝐴 ↦ 𝐵 is expressed as set of elements in B related to some element in

A

𝑟𝑎𝑛(𝑅) = { 𝑏 | 𝑏 ∈ 𝐵 ∧ ∃ 𝑎 . (𝑎 ∈ 𝐴 ∧ 𝑎 ↦ 𝑏 ∈ 𝑅 ) }

A function is defined as a relation with some constraints. A function is having two types: partial function (⇸) and

a total function (→). A partial function from set A to B (A ⇸ B) is a relation which relates an element in A to at

most one element in B.

A total function from set A to B (A → B) is a partial function where dom(f)=P, i.e., each element of set A is

related to exactly one element of set B. Given f ∈ A ⇸ B and a ∈ dom(f), f(a) represents the unique value that

a is mapped to by f.

3. System Model

In this section we give a theoretical design of a distributed system. The distributed system which is considered in

this paper is defined as:

1. processes do not have any shared memory and they communicate with each other by sending messages

over channels.

2. Channels do not lose messages and this is guaranteed by certain end-to - end transmission protocol that

helps to make the channels lossless (virtually) and first-in-first-out in message delivery.

3. Processes can fail, and all other processes will be notified in the finite time of failure when a process

fails.

Our model system comprises of a set of sites where the set of processes is running. We assumed a set of sites

coordinating their checkpoints in a way that the resulting global state is consistent. We have used the logical clock

of the Lamport to allocate the timestamp to communication sites and the messages associated. Our prototype saves

two forms of checkpoints on stable storage:

• Permanent

• Tentative

A permanent checkpoint cannot be ruled out. It ensures that it does not replay the calculation necessary to enter

the checkpointed state. Additionally, a provisional checkpoint may be undone or altered to be a permanent

checkpoint.

Besides that, we presume that the algorithm is invoked by an only one process to take a permanent checkpoint.

Our model communicates by messages transfer through lossless (virtually) networks and via Reliable broadcast.

The algorithm we are modeling here is conceptually based on the two-phase commit protocol. During the first

step, the checkpoint coordinator q takes a preliminary checkpoint and tells all other processes to take preliminary

checkpoints.

We create a hypothetical process named daemon to assume the initiating and decision-making function of the

checkpoint coordinator. When q notices that all systems have taken provisional checkpoints, q wants to officially

make all provisional checkpoints permanent, else q shall opt to dispose of the provisional checkpoints. In the

phase two, q's decision is broadcasted and all processes complete the q's choice. Our latest set of checkpoints is

indeed consistent because either every or none of the process take permanent checkpoints This decision about

checkpoint is delivered in the same manner like the request is provided to take a provisional checkpoint. The

process discards its old checkpoint after taking a new permanent checkpoint (Koo & Toueg, 1987) (Bal Krishna

Saraswat, Raghuraj Suryavanshi, & Divakar Yadav, 2021).

4. Informal Specifications of a Total Order Broadcast

Eventually a reliable broadcast (Hadzilacos & Toueg, 1994) sends the messages to all the participating processes.

A total order broadcast (Defago et al., 2004) (Hadzilacos & Toueg, 1994) is a tougher notion of a robust broadcast

which delivers messages in the same order of delivery to all processes. If the following requirements are satisfied

than the reliable broadcast can be termed as Total order broadcast.

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b, Dr. Divakar Yadav

2751

“If processes p and q both deliver messages m1 and m2, then q delivers m1 before m2 if and only if p delivers

m1 before m2.”

We can define the Total Order broadcast by the following properties:

• Validity: If a correct process Total Order broadcasts a message m, then it eventually Total Order delivers

m.

• Uniform Agreement: If a process Total Order delivers a message m, then all correct processes eventually

Total Order delivers m.

• Uniform Integrity: For any message m, every process Total Order delivers m at most once, and only if m

was previously Total Order broadcast by sender(m).

• Uniform Total Order: If processes p and q both Total Order delivers messages m and m`, then p Total

Order delivers m before m`, if and only if q Total Order delivers m before m`.

A basic broadcast that satisfies all of these properties is considered a reliable broadcast excluding Uniform Full

Order (i.e., that offers no ordering guarantee). The agreement features of a reliable transmission and total order

specifications means that all valid processes ultimately deliver the same message sequence (Hadzilacos & Toueg,

1994). As you can see in the Fig. 1, that all the messages have been delivered in the same order at every process.

In the Fig. 2 message delivery order violates the total order, as delivery order at process P1, and P2 are different.

Figure. 1 Total Order

Figure. 2 Total Order Violation

There can be four different roles for the participating process in our model: sender, destination, daemon and

sequencer. The message originates from the sender process. The message which originates from the sender

destined to destination process. The daemon is responsible for checkpoint process and sequencer is responsible

for ordering of messages. The sequencer process is responsible for making the Total Order. We will be using the

Broadcast Broadcast (BB) (Defago et al., 2004) variant Fig. 3 of the Fixed sequencer-based algorithms.

Figure. 3 Total Order - Broadcast Broadcast Variant

4.1 Total Order Implementation Framework

The most important information regarding the total order broadcast algorithm is that who will build the total order,

how to build the total order, and what other information is required to define the total order.

In the Fixed Sequencer based Total Order algorithms, one process takes the role of sequencer and is

responsible building of message ordering. At first the sender broadcasts a message m to all the processes including

sequencer process. when the sequencer process receives the message m, it generates a sequence number for

message m. Now sequencer broadcasts the sequence number for message m. All the destination processes deliver

the message m according the sequence number generated by sequencer. As shown in the Fig 3 process P2 is a

sender and sends a computation message m. As soon as the computation message m reaches the sequencer,

sequencer assigns a unique sequence number to m and broadcasts its sequence number to all the processes by a

control message m`. When the destination process receives the control message m` from sequencer, it delivers

their computation message m according to the sequence number.

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

2752

Figure. 4 Initial Part - Level 0

5. Abstract Model of Checkpoint Process Using Total Order Broadcast

We are presenting here the abstract model of the checkpoint process. We incorporated the total order broadcast

technique for communication between the participating processes, as presented in Fig 4. The dynamic part of the

model is represented by Machine in Event-B (J.-R. Abrial et al., 2010). Event-B Machine consists of the Variables,

Invariants, Guards and Action. More detailed specification about the Event-B Machine can be found in (J.-R.

Abrial, 2007). Many variables have been defined in the machine of our abstract model, which are listed below,

and the detailed definition can be found in Fig. 4:

• sender: We have defined a variable sender, that is a partial function from the set PROCESS_MSG to

PROCESS as defined in Invariant Inv:3. A notation of the form (mm ↦ pp) ∈ sender, denotes that

message mm was sent by process pp.

• daemon: daemon is checkpoint coordinator process, can be any process from the set PROCESS. This is

defined in Invariant Inv:1.

• daemon status: Represents the status of the daemon (initiator process). Any process can be a daemon. It

is a Total function from daemon to set state. It is defined in Invariant Inv: 2.

Daemon status can be any one of the four values:

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b, Dr. Divakar Yadav

2753

o awaiting

o received_all_responses

o permanent_ckpt_broadcast

o idle

A representation of the form 𝑑𝑎𝑒𝑚𝑜𝑛_𝑠𝑡𝑎𝑡𝑢𝑠 ∈ 𝑑𝑎𝑒𝑚𝑜𝑛 ↦ 𝑎𝑤𝑎𝑖𝑡𝑖𝑛𝑔 represents that daemon is

waiting to receive the response from checkpoint cohorts and did not received the response from all the

cohorts.

• sent_msg: Represents the messages which was sent by the process.

• time_sent_msg: Represents the timestamp of the sent messages.

• msg_category: Represents the category of the sent message. Sent messages can of three types:

o tentative_ckpt_req

o tentative_ckpt_response

o permanent_ckpt_msg

This is given in Fig.4

𝑖𝑛𝑣6 ∶ 𝑚𝑠𝑔_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ 𝑠𝑒𝑛𝑡_𝑚𝑠𝑔 → 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

A representation of the form 𝑚𝑠𝑔_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ 𝑚𝑚 ↦ 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑐𝑘𝑝𝑡_𝑟𝑒𝑞 represents that the

category of the message mm is tentative checkpoint request.

• deliver: deliver represents the delivery of the message to a process following the Total Order. It is a

Relation between PROCESS and PROCESS_MSG. It is defined in Fig.4

𝑖𝑛𝑣7 ∶ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 ∈ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆 ↔ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆_𝑀𝑆𝐺

A representation of the form deliver ∈ pp ↦ mm represents that message mm has been delivered to

process pp according to the Total Order.

• time_response_msg: represents the timestamp of all reply messages to the coordinator.

• ckpt_state: represents the checkpoint state of each process. ckpt_state can be any one of the three

values.

o open

o tentative

o permanent

ckpt_state is a Total function from set PROCESS to set checkpointstate. It is given in Fig.4. A

representation of the form pp ↦ tentative represents that process pp has taken tentative checkpoint.

• no_of_responded_process: represents the number of process responded for the request message for

checkpoint creation. It is a set of Natural numbers.

• tentative_ckpt_no: represents tentative checkpoint number of each process. It is a Total function from

PROCESS to Natural number. it is defined in the Fig.4.

𝑖𝑛𝑣11: 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑐𝑘𝑝𝑡_𝑛𝑜 ∈ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆 → ℕ

A representation of the form 𝑝𝑝 ↦ 1 represents that process pp has taken a Tentative checkpoint

number 1. tentative_ckpt_no store all the events which happens on the process and used for recovery

purpose for that process.

• permanent_ckpt_no: Represents the permanent checkpoint number.

• total order: The variable total order represents the relationship among the messages. A representation

of the form (𝑚1 ↔ 𝑚2) ∈ 𝑡𝑜𝑡𝑎𝑙_𝑜𝑟𝑑𝑒𝑟 indicates that message m1 is totally ordered before message

m2. It is defined in Fig.4.

𝑖𝑛𝑣13 ∶ 𝑡𝑜𝑡𝑎𝑙_𝑜𝑟𝑑𝑒𝑟 ∈ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆_𝑀𝑆𝐺 ↔ 𝑃𝑅𝑂𝐶𝐸𝑆𝑆_𝑀𝑆𝐺

5.1 Events in the Abstract model

5.1.1 Events:

Various events have been defined in the machine. Informal information about the events is given below:

1. Broadcasting checkpoint request message to the cohorts:

In the event Daemon_checkpoint_request_broadcast in Fig.5 daemon process pp broadcast a checkpoint

request message mm to all the cohorts to take the tentative checkpoint.

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

2754

Figure. 5 Broadcast operation of checkpoint process model - Level 0

The guard4: mm ∉ dom(sender) ensures that daemon always send a fresh checkpoint request message

to all the cohorts. The guard3: daemon_status(pp) = idle ensures that the status of the daemon should

be idle to send a checkpoint request message. If the given guards are true then, timestamp is assigned to

the checkpoint request message by incrementing the tentative checkpoint number of daemon process by

1, as given in action1: tentative_ckpt_no(pp) ≔ tentative_ckpt_no(pp) + 1 and in action2:

time_sent_msg(mm) ≔ tentative_ckpt_no(pp) .The status of the daemon is set to awaiting and

category of the request message is set to tentative_ckpt_req.

2. order:

The event Order models the construction of an abstract total order on message mm its first ever delivery

to a process pp, as it is given in Fig. 6. The guard2: mm ∉ ran(deliver) ensures that the message mm

has not been delivered to any other process and guard2: ran(deliver) ⊆ deliver[{pp}]ensures that any

message who has been delivered to any other process must be delivered to this process pp.

In the coming refinements of the model, we will get to know that this is the function of a designated

process sequencer to put each message in the sequence. When all the given guards are true then message

mm delivered to process pp and the variable total_order updated by the action2: total_order ≔
total_order ∪ (ran(deliver) × {mm}). This action implies that all the messages that are delivered to

any process are ordered before mm.

Figure. 6 Ordering of message according to the Total Order - Level 0

3. Checkpoint Request Message Receive by Checkpoint Cohort:

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b, Dr. Divakar Yadav

2755

The event Cohort Checkpoint Request Receive in Fig. 7 models that the checkpoint cohorts receive the

checkpoint request broadcast for the first time and then updates its tentative checkpoint number with

timestamp of the request message or its current timestamp value, whichever is higher. In Fig. 7 the

guard4: 𝑚𝑚 ∉ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟[{𝑝𝑝}] ensures that checkpoint request message mm is not delivered to the

process pp, this is a fresh request message and guard10: mm ∈ ran(deliver) ensures that the message

mm has been delivered to at least one process and the Total Order on the message mm has also been

constructed. Guard8: mm ↦ dp ∈ sender ensures that sender of the checkpoint request message is

daemon. Guard6: ckpt_state(pp) = open ensures that state of receiver process of the checkpoint

message should be open.

Figure. 7 Checkpoint request receive operation of cohorts - Level 0

If all the given guards are true then message mm is delivered to process pp in action1: 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 ≔
𝑑𝑒𝑙𝑖𝑣𝑒𝑟 ∪ {𝑝𝑝 ↦ 𝑚𝑚}.

In action2: tentative_ckpt_no(pp) ≔ max({time_sent_msg(mm), tentative_ckpt_no(pp) + 1})

process pp takes tentative checkpoint number as maximum value of timestamp of the message mm or the

tentative checkpoint number of the process incremented by 1.

4. Checkpoint request Response by Cohort:

In the event Checkpoint_Cohort_Response given in Fig. 8 every cohort process sends a timestamped

response message to daemon. To assign the timestamp to response message process increments its

tentative checkpoint number by 1 and that value is assigned as a timestamp to response message.

In guard5: pp ↦ m ∈ deliver , it is ensured that request message must be delivered to cohort. The

response message mm must be a fresh response message, it is ensured by guard3: mm ∉ dom(sender).

To send the response message to daemon, the checkpoint state of the cohort must be open.

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

2756

Figure. 8 Checkpoint response send operation of cohorts

If all the guards are true then the checkpoint state of the process pp is set to tentative and message mm is

added to the set sent_msg. Message category of the mm is set to tentative_ckpt_response, which

represents that category is tentative checkpoint response (action3:). Timestamp of the response message

mm is set to tentative checkpoint number incremented by value 1, it is given in action3:
(msg_category(mm) ≔ tentative_ckpt_response).

5. Cohort Response Submission at Daemon:

In the event Cohort_Response_submission_At_Daemon, response messages from all the cohorts are

delivered to the daemon process. It is given in Fig. 9. Whenever a daemon process receives a message

from a cohort with category tentative_ckpt_response, it updates the no_of_responded_sites with 1. The

value of the timestamp of the response message is also stored for the purpose of Permanent checkpoint

computation. Guard3: 𝑚𝑚 ∉ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟[{𝑝𝑝}] ensures that the response message mm is a fresh response

message, and it is not already delivered to process pp. Message category of the response message mm

should be tentative_ckpt_response, it is defined in guard4: 𝑚𝑠𝑔_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑚𝑚) =
𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑐𝑘𝑝𝑡_𝑟𝑒𝑠𝑝𝑜𝑛𝑠. Status of the daemon should be awaiting.

If all the given guards are true then the response message mm should be delivered to the daemon in

action1: deliver ≔ deliver ∪ {pp ↦ mm}. Whenever daemon receives the response from any cohort,

daemon updates the no_of_responded_process, it is defined in action2: no_of_responded_process ≔
no_of_responded_process + 1 . In action3: (𝑡𝑖𝑚𝑒_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑚𝑠𝑔 ≔ 𝑡𝑖𝑚𝑒_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑚𝑠𝑔 ∪
{𝑡𝑖𝑚𝑒_𝑠𝑒𝑛𝑡_𝑚𝑠𝑔(𝑚𝑚)}) timestamp of the response message is added to the pool of all timestamp of

the response messages.

Figure. 9 Cohort response submission at Daemon

6. Permanent Checkpoint Computation:

In the event permanent_ckpt_computation daemon must ensure that it has received the response

messages from the all the cohorts, it is implied by the guard2: 𝑛𝑜_𝑜𝑓_𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑑_𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =
𝑐𝑎𝑟𝑑(𝑃𝑅𝑂𝐶𝐸𝑆𝑆) − 1, as it is shown in Fig. 10.

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b, Dr. Divakar Yadav

2757

Figure. 10 Permanent Checkpoint Computation by daemon

daemon must ensure that its status should be awaiting before computing the permanent checkpoint

number, it is defined in guard3: daemon_status(pp) = awaiting.

When all the given guards are true then the daemon changes its state from awaiting to

received_all_responses, is defined in action2: daemon_status(pp) ≔ received_all_responses , and

maximum timestamp value from the received response messages is assigned to the permanent_ckpt_no,

according to the action2: permanent_ckpt_no ≔ max(time_response_msg).

7. Broadcast of Permanent Checkpoint Number

In the event Broadcast Permanent_Ckpt_No, permanent checkpoint number is broadcasted by daemon

to all cohorts. It is given in It is given in Fig.11. Guard2: mm ∉ dom(sender) ensures that message mm

is a fresh permanent checkpoint number message. We put the guard3: permanent_ckpt_no =
max(time_response_msg) to ensure that the value of permanent checkpoint number should be

maximum of the timestamp of received messages. guard6: daemon_status(pp) =
received_all_responses to ensure that status of the daemon should be received_all_responses.

When all the given guards are true, message mm is added to the sent_msg in action2: sent_msg ≔
sent_msg ∪ {mm} . Category of the sent permanent checkpoint message mm is set to the

permanent_ckpt_msg in action3: msg_category(mm) ≔ permanent_ckpt_msg. The timestamp of the

message mm is set to the value of permanent_ckpt_no in action4: time_sent_msg(mm) ≔
permanent_ckpt_n𝑜 . The status of the daemon is set to permanent_ckpt_broadcast in action5:

daemon_status(pp) ≔ permanent_ckpt_broadcast.

Figure. 11 Broadcast operation of permanent checkpoint number - Level 0

8. Permanent Checkpoint Message receive by Cohort:

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

2758

In the event Cohort_Permanent_Ckpt_Message_Receive when cohort process receives the permanent

checkpoint number message from the daemon, it updates its tentative checkpoint number with the

received permanent checkpoint message timestamp, it is given in Fig. 12.

In the guard4: 𝑚𝑠𝑔_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑚𝑚) = 𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡_𝑐𝑘𝑝𝑡_𝑚𝑠𝑔 of the Fig. 12 it is checked that the

category of the received permanent checkpoint message mm must be permanent_ckpt_msg. In the

guard6: 𝑝𝑝 ↦ 𝑚𝑚 ∉ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 it is ensured that message mm should be a fresh permanent checkpoint

message, it is not the duplicate message already received by the cohort and guard8: 𝑚𝑚 ∈ 𝑟𝑎𝑛(𝑑𝑒𝑙𝑖𝑣𝑒𝑟)

ensures that the message mm has been delivered to at least one process and the Total Order on the

message mm has also been constructed. It is also ensured that the checkpoint state of the cohort must be

tentative, as implied in the guard7: 𝑐𝑘𝑝𝑡_𝑠𝑡𝑎𝑡𝑒(𝑝𝑝) = 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒.

Figure. 12 Permanent checkpoint message receive operation by cohort - Level 0

If all the guards are true then message mm is delivered to cohort pp and tentative checkpoint number of

cohort pp is set to the timestamp of the received permanent checkpoint number message mm.

9. Switching the Checkpoint State from Tentative to Permanent:

In Fig.13 the event Switching_from_Tentative_to_Permanent_State} cohort’s checkpointing state is

changed from tentative to permanent. Before switching the checkpoint state from tentative to permanent

it is ensured that received permanent checkpoint message mm should have the category

permanent_ckpt_msg and it is also delivered to the cohort process pp, it is defined in guard3:
(𝑚𝑠𝑔_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑚𝑚) = 𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡_𝑐𝑘𝑝𝑡_𝑚𝑠𝑔) and guard5: (𝑝𝑝 ↦ 𝑚𝑚 ∈ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟) . The

checkpoint state of the cohort process must be tentative.

Figure. 13 Switching_from_Tentative_to_Permanent_state

When the given guards are true then the checkpoint state of the cohort process pp is changed to permanent

to tentative.

This is the level-0 of the refinement of abstract model of total order broadcast. In this model, abstract total order

is constructed when a message is delivered to a process for the first time. At all other processes a message is

delivered in the total order. In the next level, we will introduce the notion of sequencer.

5.2 First Refinement - Introducing the notion of sequencer

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b, Dr. Divakar Yadav

2759

In the first refinement of the abstract model, we are going to add the notion of sequencer. The Fig. 14 is the

refinement of the events given in Fig. 6, Fig. 7 and Fig. 12. The sequencer is a constant and defined as

sequencer ∈ PROCESS. As we can see in the Fig. 14, the refinement of the abstract model, in the order event, a

message is first delivered to the sequencer. We can also see in event order that the guards mm ∉ ran(deliver)

and ran(deliver) ⊆ deliver[{pp}] are replaced by the guards pp = sequencer and (sequencer ↦ mm) ∉
deliver. In the events Checkpoint Request Message Receive by Checkpoint Cohort and Permanent Checkpoint

Message receive by Cohort the guard pp ≠ sequencer ensures that message mm should be delivered to the

processes other than sequencer.

5.3 Second Refinement - Refinement of order event

It is a rather basic improvement which provides more concrete description to the order event definition. Through

this refinement we demonstrate that the messages sent to the sequencer can be used to construct a total order. As

it is given in Fig. 14, a total order is constructed as, total_order ≔ 𝑡𝑜𝑡𝑎𝑙_𝑜𝑟𝑑𝑒𝑟 ∪ (𝑟𝑎𝑛(𝑑𝑒𝑙𝑖𝑣𝑒𝑟) × {𝑚𝑚}) . It

specifies that all messages which were sent to any process are ordered before the latest message mm. The total

order is built as total_order ≔ total_order ∪ (deliver[{sequencer}] × {mm}) in the refined order event. It

specifies that all messages sent to the sequencer are ordered before the latest message mm. The refined order event

is given in Fig. 15.

Figure. 14 Checkpoint Process using Total Order Broadcast: Level-1

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

2760

Figure. 15 Checkpoint Process using Total Order Broadcast: Level-2

5.4 Third Refinement - Introducing Sequence Numbers

In the third refinement we introduce the concept of sequence numbers. The new variables counter and seqn_no is

introduced in the third refinement. The variable counter is defined as counter ∈ ℕ and variable seqn_no is

defined as seqn_no ∈ sent_msg⇸ℕ. The variable seqn_no is used to assign the sequence numbers to the sent

messages.

Figure. 16 Checkpoint Process using Total Order Broadcast: Level-3

Bal Krishna Saraswat a, Dr. Raghuraj Suryavanshi b, Dr. Divakar Yadav

2761

The counter, initialized with zero, is managed by the sequencer process, and incremented by one each time the

sequencer process sends out a control message. Throughout the Checkpoint Request Message Receive by

Checkpoint Cohort and Permanent Checkpoint Message receive by Cohort event definition it can be noticed that

such messages are delivered in their sequence numbers to processes other than the sequencer.

It can be noticed that guard in the abstract event Checkpoint Request Message Receive by Checkpoint Cohort

and Permanent Checkpoint Message receive by Cohort,

∀m. (m ∈ PROCESS_MSG ∧ (m ↦ mm) ∈ total_order ⇒ (pp ↦ m) ∈ deliver)

is replaced by the guard

∀m. (m ∈ sent_msg ∧ (seqn_no(m) < seqn_no(mm)) ⇒ (pp ↦ m) ∈ deliver).

6. Conclusion

In this paper we proposed formal design of a broadcast system in total order. In the abstract model we detail how

to create a conceptual total order on the messages. Subsequently in a set of optimization steps we explain how the

notion of control messages and sequence numbers can be used to properly enforce an abstract total order. Instead

of model checking, proving theorems by hand, or proving trace behaviour correctness, our strategy is to define

problem in the abstract model and introduce approaches or design features in the refining phases. We verify that

the variables in the refinement are true refinements of abstract variables by refinement checking. We used the

Rodin tool for proof management. This tool generates proof obligations as a result of refinement and consistency

tests, accounts for complex proof obligations for relatively simple proofs, and assists in the fulfilment of proof

obligations through automated and interactive provers.

References

1. Abrial, J. (1996). The b-book: assigning programs to meanings cambridge university press. London.

2. Abrial, J.-R. (2007). A system development process with event-b and the rodin platform. In International

conference on formal engineering methods (pp. 1-3).

3. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., & Voisin, L. (2010). Rodin: an open

toolset for modelling and reasoning in event-b. International journal on software tools for technology

transfer, 12 (6), 447-466.

4. Abrial, J.-R., Butler, M., Hallerstede, S., & Voisin, L. (2006). An open extensible tool environment for

event-b. In International conference on formal engineering methods (pp. 588-605).

5. Ahmed, W., & Wu, Y. W. (2013). A survey on reliability in distributed systems. Journal of Computer

and System Sciences, 79 (8), 1243-1255.

6. Back, R.-J. (1989). Re_nement calculus, part ii: Parallel and reactive programs. In Work-

shop/school/symposium of the rex project (research and education in concurrent systems) (pp.67-93).

7. Baldoni, R., Mostefaoui, A., & Raynal, M. (1996). Causal delivery of messages with real-time data in

unreliable networks. Real-Time Systems, 10 (3), 245-262.

8. Bal Krishna Saraswat, Raghuraj Suryavanshi, Divakar Yadav (2021). Formal Specification &

Verification of Checkpoint Algorithm for Distributed Systems using Event - B International Journal of

Engineering Trends and Technology, 69(4),1-9.

9. Bal Krishna Saraswat, D. Y., Raghuraj Suryavanshi. (2018). A comparative study of checkpointing

algorithms for distributed systems. International Journal of Pure and Applied Mathematics, 118, 1595-

1603.

10. Boulanger, J.-L. (2014). Formal methods applied to complex systems: implementation of the b method.

John Wiley & Sons.

11. Cristian, F., Aghili, H., Strong, R., & Dolev, D. (1995). Atomic broadcast: From simple message

diffusion to byzantine agreement. Information and Computation, 118 (1), 158-179.

12. Defago, X., Schiper, A., & Urban, P. (2004). Total order broadcast and multicast algorithms: Taxonomy

and survey. ACM Computing Surveys (CSUR), 36 (4), 372-421.

13. Hadzilacos, V., & Toueg, S. (1994). A modular approach to fault-tolerant broadcasts and related

problems (Tech. Rep.). Cornell University.

14. Holliday, J. (2001). Replicated database recovery using multicast communication. In Proceedings ieee

international symposium on network computing and applications. nca 2001 (pp. 104-107).

15. Kemme, B., Pedone, F., Alonso, G., Schiper, A., & Wiesmann, M. (2003). Using optimistic atomic

broadcast in transaction processing systems. IEEE Transactions on Knowledge and Data Engineering,

15 (4), 1018-1032.

16. Kim, J. L., & Park, T. (1993). An e_cient protocol for checkpointing recovery in distributed systems.

IEEE Transactions on Parallel and Distributed Systems, 4 (8), 955-960.

Formal Development of a Fault Tolerant Distributed Checkpoint Process Using Event-B

2762

17. Koo, R., & Toueg, S. (1987). Checkpointing and rollback-recovery for distributed systems. IEEE

Transactions on software Engineering(1), 23-31.

18. Lamport, L. (1978). The implementation of reliable distributed multiprocess systems. Computer

Networks (1976), 2 (2), 95-114.

19. Leu, P.-J., & Bhargava, B. (1988). Concurrent robust checkpointing and recovery in distributed systems.

In Proceedings. fourth international conference on data engineering (pp. 154-163).

20. Luan, S.-W., & Gligor, V. D. (1990). A fault-tolerant protocol for atomic broadcast. IEEE Transactions

on Parallel & Distributed Systems(3), 271-285.

21. Manivannan, D., Netzer, R. H. B., & Singhal, M. (1997). Finding consistent global checkpoints in a

distributed computation. IEEE Transactions on Parallel and Distributed Systems, 8 (6), 623-627.

22. Pedone, F., Guerraoui, R., & Schiper, A. (1998). Exploiting atomic broadcast in replicated databases.

In European conference on parallel processing (pp. 513-520).

23. Pedone, F., & Schiper, A. (1999). Generic broadcast. In International symposium on distributed

computing (pp. 94-106).

24. Schneider, F. B. (1990). Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys (CSUR), 22 (4), 299-319.

