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Abstract:  

Lasso regression (Least Absolute Shrinkage and Selection Operator) dependent on reducing shrinkage. This 

kind regression deals with cases in which the explained variables have a multicollinearity problem between 

them and in models include a large number of explained variables with the goal is to focus on the variables that 

have the most effect on the dependent variable. In this research Lasso regression were presented with deferent 

(sample size, number of explained variables and number of outliers) to show its effect on lasso and Bayesian 

lasso   regression. Numerical results showed that Lasso estimator was affected by each of the sample size, 

outlier's ratios and regression method. Other methods, such as shrinkage ridge and Bayesian ridge methods can 

be used for comparison with the assumed methods. 

Key words: Lasso Regression, Bayesian Lasso Regression, Explained Variables, Mean Square Error, 

Multicollinearity Problem, Outliers.  

 

1.Introduction 

   Lasso Regression It is a new variable selection technique proposed by Robert Tibshirani in 1996. 

Lasso is a method for reducing shrinkage. Its basic idea is to reduce the sum of the squared residuals 

under the constraint that the sum of the absolute error values of the regression coefficients is less than 

a constant 

In this field, many researches have been proposed like:- 

The research presented by Jian Huang and others in (2006) In this paper, the effect of regression has 

been shown in the case of many dimensions of the explained variables With the change of covariance 

when increasing the sample size[4].  

The research presented by Yiyuan she and others in (2011). The research include Nonconvex 

Penalized to detect outlier values in regression data sets with Masking in various P values [8]     

The research presented by S.M.A.Khaleelur Rahman and others in (2012). The research include the 

Outliers are affected by multiple regression according to the least squares method  The results show 

that the outliers method was affected [5]. 

The research presented by Achim Ahrens and others in (2019). The research includes the method of 

least squares and its effect on the number of explained variables, while presenting the theoretical 

aspects of lasso and ridge regression [1]. 

This research include applying Lasso regression on deferent data sets with outlier ratios. 

 

2.Lasso Reg 

Lasso method was first presented in  geophysical literature in (1982) [8], The term Lasso represents the 

first letters of the concept (Least Absolute Shrinkage and Selection Operator), it is a penalty function 

of the a method for estimating the parameters of the regression model and selecting with organizing 

the variables included in the model to increase the explanatory accuracy of the regression models by  

choose a subset of the common variables in the final model instead of using all of them, in the Lasso 

method the sum square errors of the proposed model is minimized [3]. 

Lasso was originally designed for Least squares models with a large amount of estimator behavior via 

the Lasso parameter or so-called Soft Thresholding, including the relationship of the Lasso estimator 

with the Ridge Regression estimator and the best subset selection of the variables. Which is similar to 

the Stepwise selection method, Lasso coefficient estimates should not be single if the explanatory 

variables suffer from the problem of multicollinearity 

 Lasso method has the ability to choose a subset based on the constraint formula, and although the 

Lasso is defined for least squares, the Lasso method can easily be used in a wide range of statistical 

models, including generalized linear models, generalized estimation factors, relative risk models, and 
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M estimators. Lasso can be used in many fields such as geometry, Bayesian statistics, and convex 

analysis 

Before the Lasso regression method, the most used method for selecting the explanatory variables that 

are included within the model was the Stepwise Selection method, which improves the accuracy of 

the model in certain cases, especially when some explanatory variables have a strong relationship with 

the response variable, which makes the prediction inaccurate, as well as Ridge Regression is the most 

popular method used to improve the prediction accuracy of the regression model. It improves 

prediction error by reducing large regression coefficients in order to reduce redundancy, but does not 

perform co-selection and thus does not help make the model more interpretable. 

Whereas Lasso can achieve both goals by making the set of absolute values of the regression 

coefficients have quantities less than a constant value, forcing some of the coefficients to be equal to 

zero, while choosing a simpler model that does not include these coefficients. 

1-2 General Lasso Formula[6,7,9]   

Lasso regression parameters were estimated according to the principle of least squares from the basic 

formula as follows:- 

min {
1

N
∑(𝑦𝑖 − β0

N

i=1

− xi
Tβ)2} … (1) 

Subject to ∑ |βj|
p
j=1 ≤t 

With 

𝑁   𝑟𝑒𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑒𝑙 𝑠𝑖𝑧𝑒 

𝑌    𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑒𝑙 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑋1 

𝑋   𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑋𝑃 

𝑃   𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  
𝑡   𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡  𝑎 𝑝𝑟𝑒 − 𝑠𝑒𝑡 𝑓𝑟𝑒𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡ℎ𝑎𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠ℎ𝑟𝑖𝑛𝑘  
    Lasso formula can be written as follows:- 

min
β0,β

{
1

N
||y − Xβ||2

2}   … (2) 

Subject to ||β|| ≤ t 
With 

||β||p = (∑ |βi|
p)

N

i=1

1/p

  … (3) 

When   (P=1) Then (  ||β||1 ) becomes the standard length (ℓp) 

Since we have  

β̂0 = y̅ − x̅i
T β  … (4)  

Then  

yi − β0 − xi
Tβ = yi − (y̅ − xi

T
 β) − xi

Tβ 

yi − β0 − xi
Tβ = (yi − y̅) − (xi − x̅)Tβ 

with 

(x̅) denotes the standard mean of the data points (xi) 

  (y̅) the mean of the dependent variable (response variable (yi))  
Thus, it is natural to work with variables that have been centralized (making their mean equal to zero) 

in addition to the explanatory variables being Typically standardizes 

i.e. 

1

𝑁
∑ xi

N

i=1

= 0  and 
1

𝑁
∑ xi

2

N

i=1

= 1 

Then formula (1) can be rewritten as follows:- 

min
β0,β

{
1

N
||y − Xβ||2

2}   … (5) 

Subject to 

||β||1 ≤t 
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It is in the LaGrange multiplicative form of the as follows:- 

min
β∈RP

{
1

N
||y − Xβ||2

2 + λ||β||1}  

With  

(λ) denote the parameter that controls the penalty force (shrinkage) over the regression estimators. 

2.2 Properties of Lasso Estimators[4]  

There are some lasso estimator properties that can list as follows:- 

a- Orthonormal Covariates  

Suppose that covariates are normally orthogonal, such that 

(xi|xj) = δij 

 With 
(. |. ) 𝑑𝑒𝑛𝑜𝑡𝑒 𝐼𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

δij 𝑑𝑒𝑛𝑜𝑡𝑒 𝐾𝑟𝑜𝑛𝑐ℎ𝑒𝑟 𝑑𝑒𝑙𝑡𝑎 Such that 

δij = {
0   𝑖𝑓  𝑖 ≠ 𝑗
1   𝑖𝑓   𝑖 = 𝑗

 

By using the iterative method of Sub gradient, which is one of the methods for solving less intrusive 

problems, we obtain:- 

β̂j = SNλ (β̂j
OLS

) = β̂j
OLS

Max(0,1 −
Nλ

|β̂j
OLS

|
 )    … (6) 

With 

β̂j
OLS

= (XTX)−1XTY  … (7) 

and 

SNλ 𝑑𝑒𝑛𝑜𝑡𝑒 𝑆𝑚𝑜𝑜𝑡ℎ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

So the goal is to reduce the following formula  

min
β∈RP

{
1

N
||y − Xβ||2

2 + λ||β||2
2}    … (8 ) 

And 

β̂j = (1 + Nλ)−1β̂j
OLS

  … (9) 

since the ridge regression shrinks all the coefficients by the variable factor of  

(1 + Nλ)−1 

and does not put any of  the coefficients to zero. 

Then 

min
β∈RP

{
1

N
||y − Xβ||2

2 + λ||β||0}   … (10 ) 

And 

β̂j = H√Nλ (β̂j
OLS

) = (|β̂j
OLS

| > √Nλ)   … ( 11  ) 

With 

H√Nλ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝐿𝑖𝑚𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

We note that the Lasso estimates combine the characteristics of the ridge regression and the regression 

of the best partial choice. It converts all parameters to zero with a fixed value and adjusts them to zero 

if they reach. 

b- Correlated Covariates 

Returning to the general form of lasso in which the different covariates may not be explanatory, in 

which case two explanatory variables (𝑖 𝑎𝑛𝑑 𝑗) are identical for each case so that 

𝑥𝑖 = 𝑥𝑗 

Then the parameter values 

𝐵𝑖   &  𝐵𝑗   

Which minimizes the Lasso objective function is not uniquely defined and in case of  

�̂�𝑖, �̂�𝑗 ≥ 0 

And if  

𝑠 ∊ [0,1] 
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By replacing (�̂�𝑖)  by  

𝑠(�̂�𝑖 + �̂�𝑗)      &    1 −  𝑠(�̂�𝑖 + �̂�𝑗)  … (12) 

While retaining the rest (�̂�𝑖) 

And we'll get a new solution and the Lasso function continues to shrink the coefficients. 

3. Bayesian Lasso Regression 

Just like Bayesian approach the lasso regression estimated parameters have been assigned prior 

distribution to include in lasso regression,  In (1996) Tibshirani use the lasso estimators as a posterior 

when the regression estimators distributed as independent identical Laplace distribution[2]. 

lasso estimators can proposed  to be the mode of the posterior distribution for  

�̂�𝐿 = arg 𝑚𝑎𝑥𝛽  𝑝 (
𝛽

𝑦
, 𝜎2𝜏) … (13) 

With 

𝑝 (
𝛽

𝜏
) = (

𝜏

2
)

𝑝

𝑒−𝜏‖𝛽‖1  … (14) 

    The likelihood  

𝑝 (
𝑦

𝛽
, 𝜎2) = 𝑁 (

𝑦

𝑋𝐵
, 𝜎2𝐼𝑛) … (15) 

For any fixed (𝜎2 > 0, 𝜏 > 0) values the posterior mode for (𝛽) will be lasso estimators with penalty 

function (𝜆 = 2𝜏𝜎2)   

The Bayesian Lasso is 

𝜋 (
𝛽

𝜎2
) =

𝜆

2𝜎
𝑒

−
𝜆

𝛽𝑗

𝜎             … (16)  

 

4.Experimental Results  

research included sets of data each of them with (3 Explained variables and 2000 sample size 

(𝑋𝑁 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 , 𝑋𝑁1 𝑤𝑖𝑡ℎ 5% 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠, 𝑋𝑁2 𝑤𝑖𝑡ℎ 10% 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠, 
𝑋𝑁3 𝑤𝑖𝑡ℎ 15% 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠, 𝑋𝑁4 𝑤𝑖𝑡ℎ 20% 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠, 𝑋𝑁5 𝑤𝑖𝑡ℎ 25% 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ) 
The results are illustrated in the following figures and tables 

Fig(1) the Plot of Coefficients fit by lasso with various Outlier ratios   

 
XN data 

 
XN1 data 

 
XN2 data 

 
XN3 data 
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XN4 data 

 
XN5 data 

Fig(1) table showed that Lambda values in range (100 − 101) for normal data, while they reached in 

range (101 − 102) for all data with Outliers. 

Table (1) Ans for Each Outlier Ratios  

XN XN1 XN2 XN3 XN4 XN5 

0 -0.00131 0 0 0 0 

1.885529 1.880074 1.909919 1.90644 1.899031 1.889054 

0 0 0 0 0 0 

-2.93665 -2.89604 -2.88625 -2.90192 -2.9095 -2.89923 

0 0 0 0 0 0 

 

Table (1) shows the ans values was similar for each normal and data with Outlier sets 

 

 

Table (2) the P values (Min,Max and Average)  Values  for Each data sets 

Data Step Min Max Average 

XN 1 0 0 0 

2 0 1.885529466 1.022836529 

3 0 0 0 

4 -

2.936653182 

0 -2.230131267 

5 0 0 0 

XN1 1 -

0.020213675 

0 -0.004349185 

2 0 1.890732496 0.862277094 

3 0 0 0 

4 -

2.905287328 

-1.38582E-15 -1.835865805 

5 0 0 0 

XN2 1 0 0 0 

2 0 1.931842015 1.289433634 

3 0 0 0 

4 -2.91396312 0 -2.075751997 

5 0 0 0 

XN3 1 0 0 0 

2 0 1.922314122 1.165941469 

3 0 0 0 

4 -

2.918571598 

0 -2.048316616 

5 0 0 0 

XN4 1 0 0 0 

2 0 1.91616459 1.103649041 
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3 0 0 0 

4 -

2.924858312 

0 -2.076941741 

5 0 0 0 

XN5 1 0 0 0 

2 0 1.907887339 1.059404557 

3 0 0 0 

4 -

2.916332166 

0 -2.01891044 

5 0 0 0 

Table (2) shows that P (Min Max and Average) values similar times and dissimilar other times for 

each normal and data with Outlier sets. 

Table(3) The P values (Max,Min and Average) Values for (Fit intercept ,Fit Information of Lambda 

,Mse and Se) for Each data sets . 

  Min Max Average 

Fit intercept XN -

7.538622795 
0.00411735 -0.928376614 

XN1 -23.8522127 -0.01428617 -3.548220074 

XN2 -27.621992 -0.400649023 -5.14744546 

XN3 -

60.78486507 
-0.579956104 -10.21472476 

XN4 -

99.19880487 
-0.608913872 -14.95873986 

XN5 -

129.6729389 
-1.009796502 -21.90383898 

Fit information 

 of lambda 

XN 0.259579328 11.77160716 3.091551963 

XN1 1.350095845 128.8731905 28.73637854 

XN2 4.367466272 180.4642479 48.45385254 

XN3 5.324125388 264.9829752 68.09731129 

XN4 6.779522259 370.3162998 93.15786009 

XN5 7.134410742 389.7012926 98.03440603 

Mse XN 0.139788703 158.0361734 27.25233686 

XN1 34.68364894 23344.08728 6285.113166 

XN2 223.6426728 88418.83625 25177.57424 

XN3 268.2681393 132868.5317 35720.19782 

XN4 286.3038251 211600.7792 49690.49518 

XN5 335.5452633 240964.1312 57715.16864 

Se XN 0.020054 19.0571 3.570341 

XN1 15.5296 11352.37 3032.085 

XN2 178.7832 40576.47 15646.62 

XN3 189.5692 42613.55 17261.82 

XN4 160.165 51213.93 17334.63 

XN5 159.946 57628.53 18234.25 

 

Table (3) Shows that (Mse) effected by Outlier ratios (Mse highly increase with increasing Outlier 

ratios)     
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Fig(2) fit-intercept values  for Each data sets 

Fig(2) Shows that fit-intercept values  for Each data sets  was decreasing in increasing Outlier rations. 

 Table (4) the (Max,Min and Average) Values for   (Lambda Min Mse and Lambda Max Mse) for 

Each data sets  

 XN XN1 XN2 XN3 XN4 XN5 

Lambda  

Min Mse 
0.259579 1.350096 4.367466 5.324125 6.779522 7.134411 

Lambda 

 Max Mse 
0.259579 1.481729 5.773533 6.412928 8.165959 8.593423 

 

Table (4) shows that Lambda (Min and Max) values was effected and increasing by increasing Outlier 

ratios . 

Table (5) Fit Information for Each data sets 

XN XN1 XN2 XN3 XN4 XN5 

-0.00384 -0.00047 -0.00039 -0.00021 -0.0001 -4.29E-05 

1.995239 1.999485 1.999828 1.999939 1.999955 2.000016 

0.001376 0.000694 0.000266 4.02E-05 1.24E-05 -8.87E-05 

-2.99931 -3.00005 -3.00006 -2.99997 -2.99997 -2.99993 

0.00315 0.000225 9.90E-05 2.84E-05 2.25E-05 -3.03E-06 
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Fig(3) fit information lambda  values  for Each data sets 

 
Fig(4) fit of intercept  for Each data sets 
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Fig(5) Fit information of lambda  for Each data sets 

 
Fig(6) Mse values  for Each data sets 
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Fig(7) Se values  for Each data sets 

Fig (3-7) shows that each values of them was effected increasing some times and decreasing other 

times with increasing Outlier ratios 

Conclusions and Suggestions 

1-Lasso regression estimators affected by Outlier ratios  

2-Mean Square Errors for lasso regression effected by Outlier ratios  

3-in increasing of Outlier ratios some of lasso parameters will increase and others will decrease 

4-kernal regression can be compared with lasso regression in data include Outlier 

5-other Outlier ratios can be included in the data sets 

 

1. Refrencess 

2. Ahrens A, Hansen CB, Schaffer ME. lassopack: Model selection and prediction with 

regularized regression in Stata. The Stata Journal. 2020;20(1):176-235. 

3. Hans C. Bayesian lasso regression. Biometrika. 2009;96(4):835-45. 

4. Hastie T, Taylor J, Tibshirani R, Walther G. Forward stagewise regression and the monotone 

lasso. Electronic Journal of Statistics. 2007;1:1-29. 

5. Huang J, Ma S, Zhang C-H. Adaptive Lasso for sparse high-dimensional regression models. 

Statistica Sinica. 2008:1603-18. 

6. Rahman SK, Sathik MM, Kannan KS. Multiple linear regression models in outlier detection. 

International Journal of Research in Computer Science. 2012;2(2):23. 

7. Reid S, Tibshirani R, Friedman J. A study of error variance estimation in lasso regression. 

Statistica Sinica. 2016:35-67. 

8. Roth V. The generalized LASSO. IEEE transactions on neural networks. 2004;15(1):16-28. 

9. She Y, Owen AB. Outlier detection using nonconvex penalized regression. Journal of the 

American Statistical Association. 2011;106(494):626-39. 

10. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 

Society: Series B (Methodological). 1996;58(1):267-88. 

11.  Alhayani, B. and Abdallah, A.A. (2020), "Manufacturing intelligent Corvus corone module 

for a secured two way image transmission under WSN", Engineering Computations, Vol. 

ahead-of-print No. ahead-of-print. https://doi.org/10.1108/EC-02-2020-0107  

0

10000

20000

30000

40000

50000

60000

70000

135791113151719212325272931333537394143454749

XN

XN1

XN2

XN3

XN4

XN5

https://doi.org/10.1108/EC-02-2020-0107


Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 2480- 2490 

Research Article 

2490 
 

12.  H. S. Hasan, A. A. Abdallah, I. Khan, H. S. Alosman, A. Kolemen et al., "Novel unilateral 

dental expander appliance (udex): a compound innovative materials," Computers, Materials 

& Continua, vol. 68, no.3, pp. 3499–3511, 2021.  doi:10.32604/cmc.2021.015968  

13. Alhayani, B., Abbas, S.T., Mohammed, H.J. et al. Intelligent Secured Two-Way Image 

Transmission Using Corvus Corone Module over WSN. Wireless Pers Commun (2021). 

https://doi.org/10.1007/s11277-021-08484-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.techscience.com/cmc/v68n3/42465

