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Abstract: Merkle-Hellman knapsack cryptosystem is a public key cryptosystem, which entails the use of two keys: public
and private, the fisrt one used for encryption, while the second one used for decryption. Unfortunately, it is not secure against
cryptosystems attacks,where it is broken by Lenstra, Lenstra, and Lovasz ( LLL Algorithm), Adi Shamir. In this paper, we
propose a Knapsack-type public key cryptosystems by using a continued fraction, where the continued fraction is used to
reduce the coding of plain text into two numbers, regardless of the length of the plain text. We will show that in this paper the
Knapsack cryptosystems is secure against the orthogonal lattice attack(LLL Algorithm). Also, the proposed cryptosystems
are secured against some attacks (brute—force attack, some known key-recovery attack, frequency attack and quantum
attacks). It shows that the continued Fraction provides short plaintext and ciphertext, in which the encrypted data volume is
noticed to be decreased by 60 precent, and this in turn reduces the delay time.

Keywords: Continued fraction, Merkle — Hellman knapsack, LLL Algorithm.

1. Introduction

A public key cryptosystem (PKC), which is a connotation first made known by Diffie and Hellman in
their salient study [1, 2], is an essential cryptographic principle in the security domain of information and
network. Conventionally, PKCs, such as RSA [3,4], and ElGamal [5,6] bear the relatively low speed obstacle
which affects other applications cryptography of the public key. Because of this, designing faster PKCs has
become a challenge for cryptographers. Consequently, invention of fast PKCs, like cryptosystems of knapsack-
type has become one of the first schemes of the public key

The evolution of Knapsack system was first done by Merkle and Hellman [7], though several other
cryptosystems of Knapsack-type are there, the considered secure ones are few, like the Chor-Rivest Knapsack
system [8,9]. In the previous studies, there have been many evolved ways and there are several trapdoors for
information hiding. For example, the use Of the problems of 0-1 Knapsack [7], compact knapsack[10],
multiplicative knapsack [11,12], modular knapsack [13,14], matrix cover [15], group factorization [16,17], and
polynomials over GF(2) [18], Diophantine equations[19], complementing sets[20], ect. Yet, nearlly the whole
used cryptosystems of Knapsack-type are subject to the attacks of low—density subset-sum [21,22,23], GCD [24],
simultaneous Diophantine approximation [25] or orthogonal lattice [17].

For designing a safe knapsack—type PKC which cannot be attacked by LLL algorithm, we must ensure that in
the system, we encode the message first using continued fraction, and then we encrypt it with the knapsack
problem to disguise the easy knapsack problem, then through the theory of continued fraction, the output of the
ciphertext is much less than the input of the plaintext, sometimes it researches about 20 percent of the plaintext.
In this case, the attacker cannot obtain a loophole that enables him to attack the ciphertext. The ciphertext of the
proposed method ensures the resulting encryption scheme meets strong security.

The study paper is divided into six sections; section 1 intdroduces the study, section 2 is devoted to discuss
Merkle-Hellman Knapsack cryptosystem, section 3 grapples with the theory of continued fraction, section 4
presents the proposed method, security analysis is provided in section 5, and finally section 6 which sums up the
conclusions of the study.

2. Merkle-Hellman Knapsack cryptosystem

The Merkle -Hellman Knapsack cryptosystem [26] was one of the first proposed public-key
cryptosystems. A super increasing knapsack [27,28], which is a set S that satisfied the condition

j-1 .
§;>Xi_1Si ,2<j<n

key generation

2289



Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 2289-2297

Research Article

choosing a super increasing knapsack S = (sq, S, -« - ,S;), also chooseing a conversion factor a and
modulus n, where n > Z’}:lsj ,ged(n,a) =1

T = sja (modn) forall j
The private key consists of the S and a™* (mod n).

Encryption
C = M.T ,where M message, C ciphertext, T publickey
Decryption

n
C.a™ = K where K € N (natural number), K = Zijj , x; €{0,1}

Jj=1
we get encoded message m = x;

Then by private key(S) and CF and Table 1 we ge the message "M".

3. Continued fraction

Continued fractions (CF) are number theory tools. The number theory is employed for providing a powerful
and helpful mode to express numbers [29]. The is an infinite continued fraction in each irrational number,
whereas there is a finite continued fraction in each rational number.

Simple continued fraction is the focus of this paper, common definitions and feartures of continued fraction
will be discussed. A simple continued fraction might be represented in numerous forms, among which is
demonstared below:

Definition 1: A simple (infinite) continued fraction is an expression of the form:
1

ag +
1
a, +

a, +

a3 + s

where ag,a,, a,, - are integers, a; > 0 forall i =1,2,---, and the number a; are called partial quotients
of the continued fraction.

The continued fraction can be written as [a, a,, az - ].

Theorem 1:

€)] Every rational number can represent a finite continued fraction.

(b) Every finite continued fraction stands for a rational number.

(© Every irrational number can singularly be repressed by an infinite continued fraction.
(d) Every infinite continued fraction represents an irrational number.

4. Proposal Method

As known, a knapsack cryptosystem can be broken by the LLL algorithm [30,31,32], however, in the
present study, we present a novel knapsack cryptosystem procedure based on using continued fraction. The
proposed procedure increases the security of knapsack cryptosystem and it makes it unattackable by the LLL
algorithm. We can illustrate the proposed algorithm as in the following stepes:

Step 1 : suppose Alice constructs her super increasing knapsack as
S = {sl,sz, e, sj} ,j € N(natural number), with a , modulus n and a™1.

Step 2 : Alice gets the general knapsack T is obtained by computing t; = a s; (mod n),
for i =1,2,3,-+,j. Then, T = { ty,t,,t3,-, t;},therefore, T is the public
key, whereas the private key is S and a~1(mod n).

Step 3 : suppose Bob wants encrypting the message “M” and send it to Alice, Bob uses
the table of Corresponding integers to letters (Table 1) ,and he writes it in the
form of the continued fraction and then he converts it to binary to get encoded
message "m".

Step 4 : he computes cipher text Cas C =m T , and it is sent to
Alice as in figure 1.

Step 5 : Alice computes a~! using Euclidean Algorithm, then, she computes,

k = C *a™! (mod n) where K € N (natural number) and using the private
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key, Alice gets the encoded message and then, by continued fraction, she gets
the original text as in figure 1.
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Bob )

Creates L\ Decrypts Messa# "M
rivate key : \ E
cryptosystem Ciphertext Encoded
O — 31,82 sj} J € Jon R message "m" by
N with a . modulus n table liand CF

K =C; *&l (mod n)

By private key(S) and CF and
table 1 get Plaintext :""M ™ er increasing knapsack as

Ciphertext: C

C=mT

encoded message m = x; :igure 1: Encryption and decryp 'On

T2z SIe Uer e gererar-rapsack T is obtained by computing t; = 6001
0,1,2,--,11. Then,

T = {5167, 4333, 997, 2828, 4822, 3643,6452,68,6137,
6273, 4877, 2085 }.

Step 3 : suppose Bob wants encrypting the message “Ahmed” and send it to Alice, Bob uses
the values A=1, H=8, M=13, E=5, D=4.
Table 1: Corresponding integers to letters.
letters ‘ \ \ l \ '
Integers
Correspon

ding to 0O 1 2 3 4 5 6 7 8 9 0

letters

Step 4 : he writes them in the form of the continued fraction as below:

1+

. (mod 6835), for i =

able 1 to get

By L
13+ —1
5+ Z
which will be equal to % , then he converts it to binary as
Decimal Binary
Step 5 : Now, Bob computes
2514 100111010010 ciphertextCas C=mT
2237 100010111101 Ci=1xt+0xt;+0xt, +1xt;

+1*xt,+1x*tg
+ O0xtg+1xt,
+0xtg+ 0xty
+ 1xtjo+ 0*tqq

Then,
1%51674+0%43334+0%997 + 1% 2828+ 1 4822+ 1 * 3643 4+ 0 * 6452
+1% 684+0* 6137+0+ 6273 + 1*4877 4+ 0=+ 2085 = 21405
And,
CZ:1*t0+0*t1+0*t2+O*t3+1*t4+0*t5+ 1*t6+1*t7+1*t8
+1xtg+ Oxtyg+ 1*tyq
Then,
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1%5167 +0+4333+0%997 + 0% 2828+ 1 4822+ 0= 3643 + 1 * 6452
+1* 68+ 1+ 6137+ 1+ 6273 + 0x4877 + 1+ 2085 = 31004
Then, the ciphertext C = {21405, 31004}, and it will be sent to Alice.
Ste 6: Alice computes a™* using Euclidean Algorithm, then a=! = 2516 (mod 6835).
Then, she computes, K=C; *a™* (mod n), i = 1,2 as
21405 * 2516 (mod 6835) = 2015

And
31004 * 2516 (mod 6835) = 5044
Step 7 : Now, for 2015 and using the private key, Alice gets 100111010010 = 2514, and she gets

100010111101= 2237 for 5044. These values are written as , and she uses Euclidean Algorithm to get the
following continued fraction:

2514 1+ 1
2237 8+ ;1
B+——7
2514 5 N Z
That is, V2937 = [1;8,13,5,4] and using Table 1, the same original plaintext “Ahmed ”
Step 8 : assume that Miro endeavours recovering the plaintext which matches with the ciphertext C. As Miro
knows the public key T and ciphertext C, she needs to find a set of w; for i =0,1,2,...... ,11 with the

restriction that each u; € {0, 1}. Then,
5167ugy + 4333 u; + 997 u, + 2828 ug + 4822 u, + 3643us + 6452 u,
+68 u; + 6137 ug + 6273 ug4877u,, + 2085 u,; = 21405
and,
5167ugy + 4333 u; + 997 u, + 2828 uy + 4822 u, + 3643us + 6452 u,
+68 u, + 6137 ug + 6273 uq + 4877u;o + 2085 uy; = 31004
The matrix equation can be written as follows:
T-U=¢C
Then, Miro rewrites the matrix equation as:

In><n 0n><1 Un><1 Unxl
M-v= [Amxn ~Bonsr ][11x1] = [01x1] =W
applying the LLL algorithm to M. Hence, Miro detects
M = [112><12 012><1 ]
T1><12 _C1><1

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

=] 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0
15167 4333 997 2828 4822 3643 6452 68 6137 6273 4877 2085 —C

where, C = {21405, 31004}. The output of LLL algorithm is a matrix M', made of short vectors in the
lattice extended by the matrix M columns.
step 9 : Now for the case: — C = —21405, Miro obtains
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-1 0 1 2 -2 0 -2 1 0 -2 2 -1 1 7
1 0 -1 -1 1 0 0 1 -1 1 -1 1 -1
-2 -2 0 0 0 0 0 1 0 1 1 0 -1
1 -1 0 0 0 0 1 -1 0 -1 -1 1 0
0 1 0 -2 0 0 0 0 0 0 0 1 0
0 0 -2 1 0 0 -1 -2 1 1 0 1 1
M =| 0 0 1 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 -2 -2 0 -1 0 0 0 -1 0
0 0 0 0 1 -1 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0o -1 1 0 0 1
0 0 0 0 0 0 1 0 1 0 0 1 -2
0 0 0 0 0 0 0 0 1 -1 -2 0 0

- 0 0 0 0 0 0 1 0 -1 -1 0 0 -1

Therefore, Miro failed to get the solution U = 100111010010.
And forthe case : — C = —31004.

—1 0 1 2 -2 0 -2 1 0 -1 -1 -1 -1

1 0 -1 -1 1 0 0 1 -1 1 1 -1 2

-2 =2 0 0 0 0 0 1 o -1 -1 -1 -3

1 -1 0 0 0 0 1 -1 0 0 0 1 1

0 1 0 -2 0 0 0 0 0 0 2 0 3

0 0 -2 1 0 1 -1 -2 1 1 -1 0 -1

M=|0 0 1 0 0 0 0 -1 0 0 0 0 1

0 0 0 0 -2 -2 0 -1 0 2 0 0 1

0 0 0 0 1 -1 0 1 0o -1 0 0 1

0 0 0 0 0 1 1 0o -1 1 0 2 1

0 0 0 0 0 0 1 0 1 0 0o -1 0

0 0 0 0 0 0 0 0 1 -1 -2 0 -1
-0 0 0 0 0 0 1 0 -1 -1 0 0 0

Also, in this case, Miro failed to get the solution U = 100010111101. Therefore, She failed to obtain the

plaintext.
5. Security analysis

e Through the above example, we proved that the proposed algorithm cannot be attacked by LLL
algorithm.

. In this paragraph we are trying to show if there were other attacks against the proposed Algorithm. If
the attacker tries to obtain the encrypted text C = U T, he cannot obtain the plaintext of the message, because it
represents a coded message and does not represent the original text of the message. but if the attacker tries to find
the value of C=U. T, C = U. M. S, he cannot get the plaintext of the message because the values (M, S, U) are
unknown.

e  Continued fraction should reduce some attacks effectiveness. A well-known process of cryptanalysis is
the analysis of frequency, which counts on detecting repeated data. Wanton force attacks run by attempting to
take several keys and decrypting the data and making sure if the data of the output is of any significance. By CF
first, an attacker has to go through decrypting the data, thereafter decoding it before checking if the output data
make any sense. He will go through a longer highly demanding process, and if he ignorant of the coding of the
data at all, he most probably never break the encryption.

e  Quantum attack cannot attack our proposed system for three reasons [33][34]:

First: If the enemy is able to obtain the ciphertext, then he cannot obtain the plaintext because the message
was encoded and then encrypted even using quantum computers.

Second: The ciphertext resulted from the encoding process is like data compression, for example if the letters
of the plaintext of the message is 60 letters, and the block size is 5, then the output of the ciphertext is about 20
letters, meaning about a third of the message information is hidden on the attacker, and the greater the block size,
the greater the amount of hidden information is.

Third: the length of the block must be divided (60); so, the number of lettersina block could is: 1, 2, 3, 4,
5, 6, 10, 12, 15, 20, 30, 60, there is no evident padding.

6. Simulation and Results
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In the beginning we used the knapsack algorithm for data in the range of (10 k.B - 410 k.B) through Table
2 and figure 2, we noticed that the more encrypted data, the greater the delay time is. While when using the
algorithm of knapsack whith CF for data, we noticed that the encrypted data volume decreased by 60 precent,
and this in turn reduces the delay time, as is evident from Table 2 and figure 2, [hint using computer
specification : cpu:intel core i5 g1 2.27GH7, RAM:8GB, Windows7 64bihs, simulation: omnet++5].

Table 2 : Knapsack vs Knapsack whith CF Latency

Delay . Delay Delay Latency
. Data size(B) . Latency-Knapsack(s) -Knapsack-
Link process transmit CFS)
0 10000 45 0 45 4.31872
, 0.0787 | 50000 9 16 10.67872 : 6.41510
o5 0.051 | 35000 135 24 15.955105 5 8.58381
0.1038 10.6575
" 40000 18 3.2 21.303816 o
0.0575 12.9423
o 50000 225 4 26.557552 5
02223 15.1714
o 60000 27 48 32.022354 02
o1 0.3314 1 76000 315 5.6 37.431492 : 17.0083
6 0.0483 | 45000 36 6.4 42.44836 " 19.2368
. 0.1568 | 95000 405 7.2 47856892 50 21.2752
0.0752 23.4039
. 100000 45 8 53.075268 4o
0.0839 | 170000 495 8.8 58.383942 25.6998
43 25
0.2598 275673
25 120000 54 9.6 63.859825 o
5 0.0073 | 130000 58.5 10.4 68.907372 ” 29.6891
0.0001 31.8020
” 140000 63 11.2 74209114 1
0.0020 34.0987
43 150000 675 12 79.502045 .
0.1787 | 160000 72 12.8 84.978752 36.1905
49 78
0.1505 | 470000 765 13.6 90.25058 38.3640
78 37
o 0.2040 | 180000 81 14.4 95.604034 , 40.6645
’y 0.3845 | 190000 855 15.2 101.084518 ot 42.5605
0.1605 445818
9y 200000 90 16 106.160522 o4
o 0.0618 | 510000 945 16.799999 111.361893 s 46.7916
o 0.1516 | 550000 99 176 116.751656 o1 48.7125
0.0125 | 530000 1035 18.4 121.91259 50.9821
87 43
43 0.1021 | 540000 108 19.200001 127.302139 72 53.0154
0.0154 | 250000 1125 20 132.515472 55.4004
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73 39
i 2 260000 117 20.799999 138.089447 g R
83 QO 270000 121.5 21.6 143.173782 50 594135
57 0% | 280000 126 224 148 453552 ,, Ot
bs 2T 290000 1305 23.200001 153.730728 g 01498
o5 4| 300000 135 24 159.148819 o 7%
e 2% 310000 1395 24.799999 164.360916 g 40
55 0% 320000 144 25.6 169.684036 o 0
97 00018 1 330000 148.5 26.4 174.901886 A 72.1761
B 153 27.200001 180.296143 o Y
0.0947 | 350000 1575 28 185594696 o
o5 00| 360000 162 28.799999 190.89595 o A
91 028771 370000 166.5 29.6 196.387802 5 80.6745
P 380000 171 30.4 201514511 i 2T
5 04 390000 175.5 31.200001 206.744553 g o
53 ™| 400000 180 32 212.057449 Lo TO%%0
b TR 40000 1845 32799999 |  217.419617 Ly o
250
200
= 150
g
5 100
oooooooooooooo
” oooooooOOOOO
0 ooooooooooooooo
0 50000 100000 150000 200000 250000 300000 350000 400000 450000
s
Figure 2: Data size (B) vs Latency(S)
7. Conclusion
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In our proposed algorithm, the concept of Continued Fraction was used to increase the security of Merkle —
Hellman Knapsack cryptosystem, so that it cannot be attacked by LLL algorithm.

Another benefit of using Continued Fraction is offering shorter ciphertext and plaintext, thus decreasing the
amount of time required for encrypting, decrypting, and transmiting data. The decreased redundancy in the
plaintext can potentially inhibit certain cryptanalysis attacks.
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