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Abstract: Merkle–Hellman knapsack cryptosystem is a public key cryptosystem, which entails the use of two keys: public 

and private, the fisrt one used for encryption, while the second one used for decryption. Unfortunately, it is not secure against 

cryptosystems attacks,where it is broken by Lenstra, Lenstra, and Lovasz ( LLL Algorithm), Adi Shamir. In this paper, we 

propose a Knapsack–type public key cryptosystems by using a continued fraction, where the continued fraction is used to 

reduce the coding of plain text into two numbers, regardless of the length of the plain text. We will show that in this paper the 

Knapsack cryptosystems is secure against the orthogonal lattice attack(LLL Algorithm). Also, the proposed cryptosystems 

are secured against some attacks (brute–force attack, some known key–recovery attack, frequency attack and quantum 

attacks). It shows that the continued Fraction provides short plaintext and ciphertext, in which  the encrypted data volume is 

noticed to be decreased by 60 precent, and this in turn reduces the delay time. 

Keywords: Continued fraction, Merkle – Hellman knapsack, LLL Algorithm. 

 

1.  Introduction  

 

    A public key cryptosystem (PKC), which is a connotation first  made known by Diffie and Hellman in 

their salient study [1, 2], is an essential cryptographic principle in the security domain of information and 

network. Conventionally, PKCs, such as RSA [3,4], and ElGamal [5,6] bear the relatively low speed obstacle 

which affects other applications cryptography of the public key. Because of this, designing faster PKCs has 

become a challenge for cryptographers. Consequently, invention of fast PKCs, like cryptosystems of knapsack-

type has become one of the first schemes of the public key 

 

    The evolution of  Knapsack system  was first done by Merkle and Hellman [7], though several other 

cryptosystems of Knapsack-type are there, the considered secure ones are few, like the Chor-Rivest Knapsack 

system [8,9]. In the previous studies, there have been many evolved ways and there are several trapdoors for 

information hiding. For example, the use 0f the problems of 0-1 Knapsack [7], compact knapsack[10], 

multiplicative knapsack [11,12], modular knapsack [13,14], matrix cover [15], group factorization [16,17], and 

polynomials over GF(2) [18], Diophantine equations[19], complementing sets[20], ect. Yet, nearlly the whole 

used cryptosystems of Knapsack-type are subject to the attacks of low–density subset-sum [21,22,23], GCD [24], 

simultaneous Diophantine approximation [25] or orthogonal lattice [17].  

     

For designing a safe knapsack–type PKC which cannot be attacked by LLL algorithm, we must ensure that in 

the system, we encode the message first using continued fraction, and then we encrypt it with the knapsack 

problem to disguise the easy knapsack problem, then through the theory of continued fraction, the output of the 

ciphertext is much less than the input of the plaintext, sometimes it researches about 20 percent of the plaintext. 

In this case, the attacker cannot obtain a loophole that enables him to attack the ciphertext. The ciphertext of the 

proposed method ensures the resulting encryption scheme meets strong security. 

     

 The study paper is divided into six sections;  section 1 intdroduces the study, section 2 is devoted to discuss 

Merkle-Hellman Knapsack cryptosystem, section 3 grapples with the theory of continued fraction, section 4 

presents the proposed method, security analysis is provided in section 5, and finally section 6 which sums up the 

conclusions of the study.   

 

2.  Merkle-Hellman Knapsack cryptosystem  

 

       The Merkle -Hellman Knapsack cryptosystem [26] was one of the first proposed public-key 

cryptosystems. A super increasing knapsack [27,28], which is a set 𝑆 that satisfied the condition  

𝑠𝑗 > ∑ 𝑠𝑖
𝑗−1
𝑖=1   , 2 ≤  𝑗 ≤ 𝑛  

 

 key generation 
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choosing a super increasing knapsack  𝑆 = (𝑠1, 𝑠2, … … , 𝑠𝑗), also chooseing a conversion factor  𝑎  and 

modulus 𝑛, where  𝑛 > ∑ 𝑠𝑗
𝑛
𝑗=1  , 𝑔𝑐𝑑(𝑛, 𝑎) = 1  

𝑇 = 𝑠𝑗𝑎 (𝑚𝑜𝑑 𝑛)   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑗 

The private key consists of  the 𝑆 and 𝑎−1 (𝑚𝑜𝑑 𝑛).  
 

Encryption 

𝐶 = 𝑀. 𝑇 ,where   M  message, C  ciphertext, T  publickey 

Decryption 

𝐶. 𝑎−1 = 𝐾    𝑤ℎ𝑒𝑟𝑒 𝐾 ∈ 𝑁 (𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟) ,   𝐾 = ∑𝑆𝑗𝑥𝑗  

𝑛

𝑗=1

  ,   𝑥𝑗 ∈ {0,1}  

𝑤𝑒 𝑔𝑒𝑡 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒    𝑚 = 𝑥𝑗 

Then by private key(S)  and  CF  and  Table 1  we ge the message "M". 

 

3. Continued fraction  

 

   Continued fractions (CF) are number theory tools. The number theory is employed for providing a powerful 

and helpful mode to express numbers [29]. The is an infinite continued fraction in each irrational number, 

whereas there is a finite continued fraction in each rational number. 

     

  Simple continued fraction is the focus of this paper, common definitions and feartures of continued fraction 

will be discussed. A simple continued fraction might be represented in numerous forms, among which is 

demonstared below: 

 

Definition 1: A simple (infinite) continued fraction is an expression of the form:  

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

𝑎3 + ⋯

 

 where   𝑎0, 𝑎1,  𝑎2, ⋯ are integers, 𝑎𝑖  > 0 for all  𝑖 = 1, 2,⋯ , and the number 𝑎𝑖  are called partial quotients 

of the continued fraction.  

The continued fraction can be written as [𝑎1, 𝑎2, 𝑎3 ⋯].  
 

Theorem 1:  

(a) Every rational number can represent a finite continued fraction. 

(b) Every finite continued fraction stands for a rational number.  

(c) Every irrational number can singularly be repressed by an infinite continued fraction. 

(d)  Every infinite continued fraction represents an irrational number. 

 

 

4. Proposal Method  

 

       As known, a knapsack cryptosystem can be broken by the LLL algorithm [30,31,32], however, in the 

present study, we present a novel knapsack cryptosystem procedure based on using continued fraction. The 

proposed procedure increases the security of knapsack cryptosystem and it makes it unattackable by the LLL 

algorithm. We can illustrate the proposed algorithm as in the following stepes:  

Step 1 :  suppose Alice constructs her super increasing knapsack as 

               𝑆 = {𝑠1, 𝑠2, ⋯ ,  𝑠𝑗}  , 𝑗 ∈ 𝑁(𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟), with  𝑎 , modulus 𝑛 and  𝑎−1.   

Step 2 : Alice gets the general knapsack 𝑇 is obtained by computing 𝑡𝑖 = 𝑎 𝑠𝑖  (𝑚𝑜𝑑 𝑛), 

             for  𝑖 = 1, 2, 3,⋯ , 𝑗.  Then, 𝑇 =   {  𝑡1, 𝑡2, 𝑡3, ⋯ ,  𝑡𝑗},therefore, 𝑇 is the public 

             key, whereas the private key is  𝑆 and  𝑎−1(𝑚𝑜𝑑 𝑛) . 
Step 3 : suppose Bob wants encrypting the message “M” and send it to Alice, Bob uses 

              the table of Corresponding integers to letters (Table 1) ,and he writes  it in the 

              form of the continued fraction and then he converts it to binary to get encoded 

              message "m". 

 Step 4 :  he computes cipher text 𝐶 as  𝐶 = 𝑚 𝑇 , and it is sent to 

               Alice as in figure 1. 

Step 5 : Alice computes 𝑎−1 using Euclidean Algorithm, then, she computes, 

             𝑘 = 𝐶 ∗ 𝑎−1 (𝑚𝑜𝑑 𝑛) 𝑤ℎ𝑒𝑟𝑒 𝐾 ∈ 𝑁 (𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟) and using the private 
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            key, Alice gets the encoded message  and then, by continued fraction, she gets      

            the original text as in figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: 

Step 1 :  suppose Alice constructs her super increasing knapsack as 

 𝑆 = {  2,   3,   7,   13,   27,   53,   107,   213,   427,   853,   1707,   3415} 

with  𝑎 = 6001  and modulus 𝑛 = 6835. Then, 𝑎−1 = 2516 (𝑚𝑜𝑑 6835).   
Step 2 : she get  the  general  knapsack  𝑇  is  obtained  by computing 𝑡𝑖 = 6001 𝑠𝑖  (𝑚𝑜𝑑 6835),  for  𝑖 =

0, 1, 2,⋯ , 11.  Then,  

𝑇 =    { 5167,   4333,   997,   2828,   4822,   3643, 6452, 68, 6137, 
6273,   4877,   2085 }. 

Step 3 : suppose Bob wants encrypting the message “Ahmed” and send it to Alice, Bob uses Table 1 to get 

the values A=1, H=8, M=13, E=5, D=4. 

Table 1:  Corresponding integers to letters. 

letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Integers 

Correspon

ding to 

letters 

1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

 

Step 4 :  he writes them in the form of the continued fraction as below:  

1 +
1

8 +
1

13 +
1

5 +
1
4

 

 which will be equal to  
2514

2237 
 , then he converts it to binary as 

  

 

Step 5 : Now, Bob computes 

cipher text 𝐶 as  𝑪 = 𝒎 𝑻 

𝐶1 = 1 ∗ 𝑡0 + 0 ∗ 𝑡1 + 0 ∗ 𝑡2 + 1 ∗ 𝑡3
+ 1 ∗ 𝑡4 + 1 ∗ 𝑡5
+ 0 ∗ 𝑡6 + 1 ∗ 𝑡7
+ 0 ∗ 𝑡8 +  0 ∗ 𝑡9
+  1 ∗ 𝑡10 +  0 ∗ 𝑡11 

Then, 

1 ∗ 5167 + 0 ∗ 4333 + 0 ∗ 997 + 1 ∗  2828 + 1 ∗  4822 + 1 ∗  3643 + 0 ∗ 6452 

+ 1 ∗  68 + 0 ∗  6137 + 0 ∗   6273 +  1 ∗ 4877 + 0 ∗  2085 = 21405 

And, 

𝐶2 = 1 ∗ 𝑡0 + 0 ∗ 𝑡1 + 0 ∗ 𝑡2 + 0 ∗ 𝑡3 + 1 ∗ 𝑡4 + 0 ∗ 𝑡5 + 1 ∗ 𝑡6 + 1 ∗ 𝑡7 + 1 ∗ 𝑡8 

                + 1 ∗ 𝑡9 +  0 ∗ 𝑡10 +  1 ∗ 𝑡11  

Then, 

Decimal Binary 

2514 100111010010 

2237 100010111101 

Figure 1: Encryption  and  decryption 

Bob  

Message : "M" 

 

Encryption : 

Using public key T 

𝑪 = 𝒎 𝑻 

 

 

 

Ciphertext : 𝑪 

 

Alice  

Public key T : 

𝑻 = {𝒕𝟏, 𝒕𝟐, 𝒕𝟑, ⋯ ,  𝒕𝒋 } 

 

Decryption : 

𝑲 = 𝑪𝒊 ∗ 𝒂−𝟏 (𝒎𝒐𝒅 𝒏) 

 𝑲 = ∑𝑺𝒋𝒙𝒋 

𝒏

𝒋=𝟏

  ,   𝒙𝒋 ∈ {𝟎, 𝟏}  

𝒆𝒏𝒄𝒐𝒅𝒆𝒅 𝒎𝒆𝒔𝒔𝒂𝒈𝒆    𝒎 = 𝒙𝒋 

 

 

 

 

 

By private key(S) and CF and  

table 1 get Plaintext :"M " 

 

Private key : 

𝑺 = {𝒔𝟏, 𝒔𝟐, ⋯ ,  𝒔𝒋}  , 𝒋 ∈

𝑵 with  𝒂 , modulus 𝒏 

and  𝒂−𝟏
    

 

Creates 

cryptosystem 

Decrypts 

Ciphertext Encoded 

message "m" by 

table 1  and CF 
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1 ∗ 5167 + 0 ∗ 4333 + 0 ∗ 997 + 0 ∗  2828 + 1 ∗  4822 +  0 ∗  3643 + 1 ∗ 6452 

+1 ∗  68 + 1 ∗  6137 + 1 ∗   6273 +  0 ∗ 4877 + 1 ∗  2085 = 31004 

Then, the ciphertext 𝐶 = {21405, 31004}, and it will be sent to Alice. 

Ste 6: Alice computes 𝑎−1 using Euclidean Algorithm, then 𝑎−1 = 2516 (𝑚𝑜𝑑 6835).  

          Then, she computes, K = 𝐶𝑖 ∗ 𝑎−1 (𝑚𝑜𝑑 𝑛), 𝑖 = 1,2    as 

21405 ∗ 2516 (𝑚𝑜𝑑 6835) = 2015  
And  

31004 ∗ 2516 (𝑚𝑜𝑑 6835) = 5044 

Step 7 : Now, for 2015 and using the private key, Alice gets 100111010010 = 2514, and she gets 

100010111101= 2237 for 5044. These values are written as 
2514

2237
  , and she uses Euclidean Algorithm to get the 

following continued fraction:  
2514

2237
= 1 +

1

8 +
1

13 +
1

5 +
1
4

 

That is, 
2514

2237
= [1;8,13,5,4] and using Table 1, the same original plaintext “Ahmed” . 

Step 8 : assume that Miro endeavours recovering the plaintext which matches with the ciphertext 𝐶. As Miro 

knows the public key T and ciphertext 𝐶, she needs to find a set of  𝑢𝑖   𝑓𝑜𝑟  𝑖 = 0, 1,2, … … , 11 with the 

restriction that each  𝑢𝑖 ∈ { 0 , 1}. Then,   

5167𝑢0 + 4333 𝑢1 + 997 𝑢2 + 2828 𝑢3 + 4822 𝑢4 +  3643𝑢5 + 6452 𝑢6  
+68 𝑢7 + 6137 𝑢8 + 6273 𝑢94877𝑢10 + 2085 𝑢11 = 21405  

and, 

5167𝑢0 + 4333 𝑢1 + 997 𝑢2 + 2828 𝑢3 + 4822 𝑢4 +  3643𝑢5 + 6452 𝑢6  
+68 𝑢7 + 6137 𝑢8 + 6273 𝑢9 + 4877𝑢10 + 2085 𝑢11 = 31004  

The matrix equation can be written as follows: 

𝑇 ∙  𝑈 =  𝐶 

Then, Miro rewrites the matrix equation as:  

𝑀 ∙  𝑉 =  [
𝐼𝑛×𝑛 0𝑛×1

𝐴𝑚×𝑛 −𝐵𝑚×1     
] [

𝑈𝑛×1

11×1
] = [

𝑈𝑛×1

01×1
] = 𝑊 

applying the LLL algorithm to  𝑀. Hence, Miro detects  

𝑀 = [ 
𝐼12×12 012×1 

𝑇1×12 −𝐶1×1      
] 

  =

[
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

5167 4333 997 2828 4822 3643 6452 68 6137 6273 4877 2085 −𝐶   ]
 
 
 
 
 
 
 
 
 
 
 
 

 

where,  𝐶 = {21405, 31004}. The output of LLL algorithm is a  matrix  𝑀′, made of short vectors in the 

lattice extended by the matrix M columns.  

 step 9 :  Now for the case: − 𝐶 =  −21405, Miro obtains 
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𝑀′  =

[
 
 
 
 
 
 
 
 
 
 
 
 
−1   0 1 2 −2   0 −2    1 0 −2   2 −1   1

1 0 −1   −1   1 0 0 1 −1   1 −1   1 −1   
−2   −2   0 0 0 0 0 1 0 1 1 0 −1   

1 −1   0 0 0 0 1 −1  0 −1   −1   1 0
0 1 0 −2   0 0 0 0 0 0 0 1 0
0 0 −2   1 0 0 −1   −2  1 1 0 1 1
0 0 1 0 0 0 0 −1  0 0 0 0 0
0 0 0 0 −2   −2   0 −1  0 0 0 −1   0
0 0 0 0 1 −1   0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 −1   1 0 0 1
0 0 0 0 0 0 1 0 1 0 0 1 −2   
0 0 0 0 0 0 0 0 1 −1   −2   0 0
0 0 0 0 0 0 1 0 −1   −1  0 0 −1   ]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Therefore, Miro failed to get the solution  𝑈 =  100111010010. 

  And for the case : − 𝐶 =  −31004. 

𝑀′ =

[
 
 
 
 
 
 
 
 
 
 
 
 
−1  0 1 2 −2   0 −2   1 0 −1   −1   −1   −1   
1 0 −1   −1   1 0 0 1 −1   1 1 −1   2

−2   −2   0 0 0 0 0 1 0 −1   −1   −1   −3   
1 −1   0 0 0 0 1 −1   0 0 0 1 1
0 1 0 −2   0 0 0 0 0 0 2 0 3
0 0 −2   1 0 1 −1   −2   1 1 −1   0 −1   
0 0 1 0 0 0 0 −1  0 0 0 0 1
0 0 0 0 −2   −2   0 −1 0 2 0 0 1
0 0 0 0 1 −1   0 1 0 −1   0 0 1
0 0 0 0 0 1 1 0 −1   1 0 2 1
0 0 0 0 0 0 1 0 1 0 0 −1   0
0 0 0 0 0 0 0 0 1 −1   −2    0 −1   
0 0 0 0 0 0 1 0 −1  −1   0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

  Also, in this case, Miro failed to get the solution 𝑈 = 100010111101. Therefore, She failed to obtain the 

plaintext.  

 

5. Security analysis  

 

• Through the above example, we proved that the proposed algorithm cannot be attacked by LLL 

algorithm.  

• In this paragraph we are trying to show if there were other attacks against the proposed Algorithm. If 

the attacker tries to obtain the encrypted text C = U T, he cannot obtain the plaintext of the message, because it 

represents a coded message and does not represent the original text of the message. but if the attacker tries to find 

the value of  C = U. T, C = U. M. S, he cannot get the plaintext of the message because the values (M, S, U) are 

unknown. 

• Continued fraction should reduce some attacks effectiveness. A well-known process of cryptanalysis is 

the analysis of frequency, which counts on detecting repeated data. Wanton force attacks run by attempting to 

take several keys and decrypting the data and making sure if the data of the output is of any significance. By CF 

first, an attacker has to go through decrypting the data, thereafter decoding it before checking if the output data 

make any sense. He will go through a longer highly demanding process, and if he ignorant of the coding of the 

data at all, he most probably never break the encryption.  

• Quantum attack cannot attack our proposed system for three reasons [33][34]: 

First: If the enemy is able to obtain the ciphertext, then he cannot obtain the plaintext because the message 

was encoded and then encrypted even using quantum computers. 

Second: The ciphertext resulted from the encoding process is like data compression, for example if the letters 

of the plaintext of the message is 60 letters, and the block size is 5, then the output of the ciphertext is about 20 

letters, meaning about a third of the message information is hidden on the attacker, and the greater the block size, 

the greater the amount of hidden information is. 

 Third: the length of the block must be divided (60); so, the number of letters in a    block could is: 1, 2, 3, 4, 

5, 6, 10, 12, 15, 20, 30, 60, there is no evident padding. 

 

 

 

6. Simulation and Results  
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     In the beginning we used the knapsack algorithm for data in the range of (10 k.B -   410 k.B) through Table 

2 and figure 2, we noticed that the more encrypted data, the greater the delay time is. While when using the 

algorithm of knapsack whith CF for data, we noticed that the encrypted data volume decreased by 60 precent, 

and this in turn reduces the delay time, as is evident from Table 2 and figure 2, [hint using computer 

specification : cpu:intel core i5 g1 2.27GH7, RAM:8GB, Windows7 64bihs, simulation: omnet++5]. 

 

Table 2 : Knapsack vs Knapsack whith CF Latency 

Delay 

Link 
Data size(B) 

Delay 

process 

Delay 

transmit 
Latency-Knapsack(s) 

Latency

-Knapsack-

CF(s) 

0 10000 4.5 0 4.5 4.31872 

0.0787

2 
20000 9 1.6 10.67872 

6.41510

5 

0.0551

05 
30000 13.5 2.4 15.955105 

8.58381

6 

0.1038

16 
40000 18 3.2 21.303816 

10.6575

53 

0.0575

52 
50000 22.5 4 26.557552 

12.9423

52 

0.2223

52 
60000 27 4.8 32.022354 

15.1714

92 

0.3314

91 
70000 31.5 5.6 37.431492 

17.0083

6 

0.0483

6 
80000 36 6.4 42.44836 

19.2368

89 

0.1568

9 
90000 40.5 7.2 47.856892 

21.2752

69 

0.0752

67 
100000 45 8 53.075268 

23.4039

42 

0.0839

43 
110000 49.5 8.8 58.383942 

25.6998

25 

0.2598

25 
120000 54 9.6 63.859825 

27.5673

68 

0.0073

69 
130000 58.5 10.4 68.907372 

29.6891

16 

0.0091

16 
140000 63 11.2 74.209114 

31.8020

44 

0.0020

43 
150000 67.5 12 79.502045 

34.0987

47 

0.1787

49 
160000 72 12.8 84.978752 

36.1905

78 

0.1505

78 
170000 76.5 13.6 90.25058 

38.3640

37 

0.2040

31 
180000 81 14.4 95.604034 

40.6645

2 

0.3845

22 
190000 85.5 15.2 101.084518 

42.5605

24 

0.1605

24 
200000 90 16 106.160522 

44.5818

94 

0.0618

93 
210000 94.5 16.799999 111.361893 

46.7916

53 

0.1516

54 
220000 99 17.6 116.751656 

48.7725

91 

0.0125

87 
230000 103.5 18.4 121.91259 

50.9821

43 

0.1021

43 
240000 108 19.200001 127.302139 

53.0154

72 

0.0154 250000 112.5 20 132.515472 55.4094
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73 39 

0.2894

42 
260000 117 20.799999 138.089447 

57.3137
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    In our proposed algorithm, the concept of Continued Fraction was used to increase the security of Merkle –

Hellman Knapsack cryptosystem, so that it cannot be attacked by LLL algorithm.  

    

 Another benefit of using Continued Fraction is offering shorter ciphertext and plaintext, thus decreasing the 

amount of time required for encrypting, decrypting, and transmiting data. The decreased redundancy in the 

plaintext can potentially inhibit certain cryptanalysis attacks.   
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