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1.Introduction 

 

George and Veeramani[4] modified the concept of fuzzy metric space introduced by Kramosil and Michalek[6] 

with a view to obtain a Hausdroff topology on fuzzy metric spaces which have very important applications in 

quantum particle particularly in connection with both string and E-infinity theory. In 2004, Park[7] defined the 

concept of Intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms. 

 

Several researchers have shown interest in the Intuitionistic fuzzy set theory and successfully applied in many 

fields, it can be found in [5,9,10,12,13,14,15]. Fuzzy application in almost every direction of mathematics such as 

airthmetic, topology, graph theory, probability theory, logic etc. 

In this paper , the concept of μ-metrics induced by an Intuitionistic fuzzy metric spaces  are introduced and 

also discuss  some properties of μ-metrics on Intuitionistic fuzzy metric spaces. 

 

2.Preliminaries 

 

Definition 2.1:[16] 

Let X be a nonempty set. A fuzzy set A in X is characterized by its membership function μA ∶  X →  [0, 1] and 

μA(x) is interpreted as the degree of membership of element x in fuzzy set A for each x ∈  X. It is clear that A is 

completely determined by the set of tuples A =  {(x, μA(x))|x ∈  X}.         

Definition 2.2:[4] 

 The 3-tuple (A, M,∗) is said to be a fuzzy metric space if A be  a non empty set and ∗ be a continuous t-

norm. A fuzzy set A2 x (0, ∞) is called a fuzzy metric on A if a, b, c ∈  A and s, t > 0 , the following condition 

holds 

1. M (a, b, t) = 0 
2. M (a, b, t) =  1 if and only if a = b 
3. M (a, b, t)  =  M(b, a, t ) 
4. M (a, b, t +  s)  ≥  M(a, b, t)  ∗  M(a, b, s) 
5. M (a, b,•) ∶  (0, +∞) à [0, 1] is left continuous 

 The function M(a, b, t) denote the degree of nearness between a and b with respect to t respectively. 

Definition 2.3:[1][2] 

 Let a set E be fixed. An IFS A in E is an object of the following  A = {(x, μA(x), υA(x)), x ∈ E } Where 

the functions μA(x) ∶  E à[0, 1] and υA (x ) ∶  E à[0, 1] determine the degree of membership and the degree of 

non-membership of the element x ∈ E, respectively, and for every x ∈ E: 0 ≤ μA(x) + υA(x) ≤ 1 ,When 

υA(x) = 1 − μA(x) for all x ∈ E is an ordinary fuzzy set. In addition, for each IFS A in E, if πA(x) = 1 −
 μA(x) − υA(x). Then μA(x) is called the degree of indeterminacy of X to A or called the degree of hesitancy of 

X to A. It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ E.  

 

 

 

Definition 2.4:[7] 

 A 5-tuple (A, M, N,∗,∘) is said to be an Intuitionistic fuzzy metric space if A  is an arbitrary set, ∗ is a 

continuous t-norm, ∘ is a continuous t- conorm and, M, N are fuzzy sets on A2  ×  [0, ∞) satisfying the conditions: 

1. M(a, b, t)  +  N(a, b, t)  ≤  1, for all a, b ϵ A and ;  t ˃ 0 
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2. M(a, b, 0)  =  0, for all a, b ϵ A 
3. M(a, b, t) =  1, for all a, b ϵ A and t ˃ 0 if and only if a =  b 

4. M(a, b, t) =  M(b, a, t), for all a, b ϵ A and t >  0 

5. M(a, b, t) ∗ M(b, c, s) ≤  M(a, c, t + s), for all a, b, c ϵ A and s, t ˃ 0 

6. M(a, b,•): [0, ∞) → [0, ∞]is left continuous, for all a, b ϵ A 
7. lim

𝑡→∞
M(a, b, t)  = 1, for all a, b ϵ A and t ˃ 0 

8. N(a, b, 0) =  1, for all a, b ϵ A  

9. N(a, b, t)  =  0, for all a, b ϵ A and t ˃ 0 if and only if a = b 

10. N(a, b, t) =  N(b, a, t), for all a, b ϵ A and t >  0 

11. N(a, b, t) ∘  N(b, c, s) ≥  N(a, c, t + s), for all a, b, c ϵ A and s, t ˃ 0 

12. N(a, b,•): [0, ∞) → [0,1]is right continuous, for all a, b ϵ A 

13.  lim
𝑡→∞

N(a, b, t)  = 0, for all a, b ϵ A. 

The functions M(a, b, t)and N(a, b, t) denote the degree of nearness and the degree of non-nearness between 

a and b w. r. t. t respectively. 

3.PROPERTIES OF 𝛍-METRICS INDUCED BY AN INTUITIONISTIC FUZZY METRIC SPACE 

Definition 3.1: 

Let (A, M, N,∗,∘) be a Intuitionistic fuzzy metric space and μ ϵ (0,1), Let ΩM,N;μ(a, b) and ωM,N;μ(a, b) be 

defined by  ΩM,N;μ(a, b) = inf  { t ϵ R ∶ M( a, b, t) > μ, N(a, b, t) < μ},    

 ωM,N;μ(a, b) = sup { t ϵ R ∶ M( a, b, t) < μ, N(a, b, t) > μ} 

Theorem 3.2: 

 Let (A, M, N,∗,∘)  be a Intuitionistic fuzzy metric space. For each μ ϵ (0,1),  ΩM,N;μ and ωM,N;μ are 

metric on A. 

Proof: 

 For each pair a, b, M(a, b, t) & 𝑁(a, b, t) is an increasing function and decreasing function of 𝑡 

respectively, we observe that { t ϵ R ∶ M( a, b, t) > μ, N(a, b, t) < μ} is an interval with left end ΩM,N;μ(a, b) and 

right end +∞. 
 Clearly,ΩM,N;μ(a, b) ≥ 0 and ΩM,N;μ(a, b) = ΩM,N;μ(b, a) for all a, b ∈ A. If a = b then M(a, b, t) =

1, N(a, b, t) = 0 for all t > 0, which implies {t: M(a, b, t) > 𝜇, 𝑁(𝑎, 𝑏, 𝑡) < 𝜇} = (0, ∞)  

 

and hence ΩM,N;μ(a, b) = 0. 

Conversely, suppose that ΩM,N;μ(a, b) = 0 and a ≠ b. since M(a, b, t) & 𝑁(𝑎, 𝑏, 𝑡) is right & left continuous at 

0 respectively and M(a, b, 0) = 0, N(a, b, 0) = 1, there exists t0 > 0 such that  

                 {M(a, b, t) < 𝜇, 𝑁(𝑎, 𝑏, 𝑡) > μ},  

this implies that t0 ∉ {t: M(a, b, t) > 𝜇, 𝑁(𝑎, 𝑏, 𝑡) < 𝜇} and hence ΩM,N;μ(a, b) ≥ t0 > 0, which is a 

contradiction.Thus we have proved that ΩM,N;μ(a, b) = 0 if and only if  a = b. 

Let a, b, c ∈ A. If any two of a, b and c are equal, then it follows that ΩM,N;μ(a, c) ≤  ΩM,N;μ(a, b) +

ΩM,N;μ(b, c). 

So we assume that a, b and c are pairwise distinct. We have, 

M(a, b, ΩM,N;μ(a, b) + ε 2⁄ ) > 𝜇 

N(a, b, ΩM,N;μ(a, b) + ε 2⁄ ) < 𝜇 

M(b, c, ΩM,N;μ(b, c) + ε 2⁄ ) > 𝜇 

N(b, c, ΩM,N;μ(b, c) + ε 2⁄ ) < 𝜇 

And hence M(a, c, ΩM,N;μ(a, b) + ΩM,N;μ(b, c) + ε) > 𝜇, 

N(a, c, ΩM,N;μ(a, b) + ΩM,N;μ(b, c) + ε) < 𝜇 

This implies that  

(ΩM,N;μ(a, b) + ΩM,N;μ(b, c) + ε)  ∈  {t: M(a, c, t) > 𝜇, 𝑁(𝑎, 𝑐, 𝑡) < 𝜇} 

Which shows that ΩM,N;μ(a, c) ≤  ΩM,N;μ(a, b) + ΩM,N;μ(b, c) + ε t. 

This is true for all 𝜀 > 0, we have ΩM,N;μ(a, c) ≤  ΩM,N;μ(a, b) + ΩM,N;μ(b, c) and ΩM,N;μ is a metric. 

Similarly, we can show that ωM,N;μ is a metric. 

 

Theorem 3.3: 

 Let  M, N be a Intuitionistic fuzzy metric on A. Then for any a, b ∈ A, ΩM,N;μ(a, b) = ωM,N;μ(a, b)  f 

and only if the set { t ∶  M(a, b, t) = μ, N(a, b, t) = μ} contains atmost one element. 

Proof: 

 Let  G = { t ∶  M(a, b, t) = μ, N(a, b, t) = μ}, 

Gl = { t ∶  M(a, b, t) < 𝜇, 𝑁(a, b, t) > 𝜇} 
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Gu = { t ∶  M(a, b, t) > 𝜇, 𝑁(a, b, t) < 𝜇} 

Suppose that G contains two elements t1and t2  with  t1 <  t2, then t1 ∉ Gl,  t2 ∉ Gu and hence 

ωM,N;μ(a, b) ≤ t1 <  t2 ≤ ΩM,N;μ(a, b), which implies that   ωM,N;μ(a, b) ≠ ΩM,N;μ(a, b). 

Conversely, if   ωM,N;μ(a, b) < ΩM,N;μ(a, b), then we choose a real number g such that   ωM,N;μ(a, b) < 𝑔 <

ΩM,N;μ(a, b).  

 

Therefore it follows that 𝑔 ∉ Gl ⊆ (−∞, ωM,N;μ(a, b)] and 𝑔 ∉ Gu = [ΩM,N;μ(a, b), +∞) and hence g ∈ G. 

Thus G contains uncountable elements. 

Lemma 3.4: 

 Let (A, M, N,∗,∘) be a Intuitionistic fuzzy metric space. If 0 < μ1 <  μ2 < 1, then  ΩM,N;μ1
≤  ΩM,N;μ2

 

and ωM,N;μ1
≤ ωM,N;μ2

. 

Proof: 

Since μ1 <  μ2, we have {t: M(a, b, t) < μ1, N(a, b, t) > μ1} ⊆ {t: M(a, b, t) < μ2, N(a, b, t) > μ2} and 

{t: M(a, b, t) > μ1, N(a, b, t) < μ1} ⊇ {t: M(a, b, t) > μ2, N(a, b, t) < μ2}. So, it follows that  ΩM,N;μ1
(a, b) ≤

 ΩM,N;μ2
(a, b) and ωM,N;μ1

(a, b) ≤ ωM,N;μ2
(a, b). 

Example 3.5:   

 For a, b ∈ ℛ, if M(a, b, t) = {
t

t+|a−b|
, t > 0

0,           t ≤ 0
  and     

   N(a, b, t) = {
|a−b|

t+|a−b|
, t > 0

1,           t = 0
     

Then M&𝑁 are Intuitionistic fuzzy metric on ℛ. Let us take a = 2 and b = 1. Then M(a, b, t) =  
t

t+1
 ,  

N(a, b, t) =  
1

t+1
 ,   ΩM,N;μ(a, b) =

μ

1−μ
. ΩM,N;μ(a, b) → ∞ as μ → 1. 

Remark 3.6: 

 To characterize the Intuitionistic fuzzy metrics, for which the limits lim
μ→1

ΩM,N;μ 𝑎𝑛𝑑 lim
μ→1

ωM,N;μ exist. We 

introduce a particular class of  Intuitionistic fuzzy metric spaces, which satisfy the finite distance condition (FD) 

for every pair (a, b), there exists ta,b such that M(a, b, ta,b) = 1, N(a, b, ta,b) = 0. 

Definition 3.7: 

An Intuitionistic fuzzy metric space (A, M, N,∗,∘)  is said to be an FD- Intuitionistic fuzzy metric space if it 

satisfies the condition, for every pair (a, b), there exist ta,b such that M (a, b, ta,b)  =  1, N(a, b, ta,b)  =  0. 

Definition 3.8: 

Let (A, M, N,∗,∘)  be a FD-Intuitionistic fuzzy metric space. We define the actual metric induced by the 

Intuitionistic fuzzy metric M, N by  dM,N(a, b) =  lim
μ→1

ΩM,N;μ(a, b) provided  the limit exists for all a, b ∈ A. 

Lemma 3.9: 

Let (A, M, N,∗,∘) be a Intuitionistic fuzzy metric space. If 0 < μ1 <  μ2 < 1, then  ΩM,N;μ1
(a, b) ≤

ωM,N;μ2
(a, b), ∀a, b ∈ A. 

Proof: 

 If  ωM,N;μ2
(a, b) < ΩM,N;μ1

(a, b), then we choose t0 ∈ ℛ such that ωM,N;μ2
(a, b) < t0 < ΩM,N;μ1

(a, b). 

Hence, we have   t0 ∉ (−∞, ωM,N;μ2
(a, b)) = {t: M(a, b, t) < μ2, N(a, b, t) > μ2} and  

 

t0 ∉ (ΩM,N;μ1
(a, b), ∞) = {t: M(a, b, t) > μ1, N(a, b, t) < μ1} 

Therefore μ1 ≥ M(a, b, t0) ≥ μ2, μ1 ≤ N(a, b, t0) ≤ μ2, 
Which is a contradiction. 

Hence ΩM,N;μ1
(a, b) ≤ ωM,N;μ2

(a, b). 

Theorem 3.10: 

 Let (A, M, N,∗,∘)  be a Intuitionistic fuzzy metric space. Then the following are equivalent. 

(i) (A, M, N,∗,∘)  is an (FD) Intuitionistic fuzzy metric space. 

(ii) lim
μ→1

ωM,N;μ(a, b) exists for all pairs (a, b). 

(iii) lim
μ→1

ΩM,N;μ(a, b) exists for all pairs (a, b). 

Proof: 

(i)⇒(ii) The condition (FD) states that for every pair (a, b) of points in A, there exists ta,b such that 

M (a, b, ta,b) =  1 > 𝜇, 𝑁(a, b, ta,b) =  0 < 𝜇 ∀ 𝜇 ∈ (0,1), and hene ΩM,N;μ(a, b) = inf  { t ∶ M( a, b, t) >

μ, N(a, b, t) < μ} ≤ ta,b. Since ωM,N;μ(a, b) ≤ ΩM,N;μ(a, b) ≤ ta,b, for all μ ∈ (0,1), and ωM,N;μ(a, b) increases 

with μ, we see that lim
μ→1

ωM,N;μ(a, b) exists. 
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(ii)⇒(iii) Let μ ∈ (0,1) be arbitrary. We choose μ′ between μ and 1. Then by lemma 3.9, we have 

ΩM,N;μ(a, b) ≤ ωM,N;μ′(a, b) ≤ lim
μ→1

ωM,N;μ(a, b), as ωM,N;μ(a, b) increases with μ. Since  ΩM,N;μ(a, b) increases 

as μ increases and bounded above, we conclude that lim
μ→1

ΩM,N;μ(a, b) exists. 

(iii)⇒(i) Assume that lim
μ→1

ΩM,N;μ(a, b) exists and let it be t0. Since ΩM,N;μ(a, b) increases as μ increases, we 

have  t0 + 1 > ΩM,N;μ(a, b) for all 0 < 𝜇 < 1. Hence M( a, b, t0 + 1) > μ, N(a, b, t0 + 1) < μ, for all 0 < 𝜇 <

1. Thus M( a, b, t0 + 1) = 1, N(a, b, t0 + 1) = 0. 
Corollary 3.11: 

Let (A, M, N,∗,∘)  be a FD-Intuitionistic fuzzy metric space. Then for any a, b ∈ A, lim
μ→1

ωM,N;μ(a, b) =

 lim
μ→1

ΩM,N;μ(a, b).  

Proof: 

 Let a, b ∈ A be fixed arbitrarily. By the condition (FD), both of the limits exist using  ωM,N;μ(a, b) ≤

ΩM,N;μ(a, b), ∀ μ ∈ (0,1). We get that lim
μ→1

ωM,N;μ(a, b) ≤  lim
μ→1

ΩM,N;μ(a, b). On the other hand from lemma 3.9, 

we have that  ΩM,N;μ1
(a, b) ≤ ωM,N;μ2

(a, b), whenever μ1 < μ2. If we allow  μ1to 1, then μ2 also tends to 1 and 

hence we get the reverse inequality lim
μ1→1

ΩM,N;μ1
(a, b) ≤  lim

μ2→1
ωM,N;μ2

(a, b). 

 

4.Conclusion 

 

  In this paper, we have discussed μ-metrics induced by an Intuitionistic fuzzy metric and proved that the existence 

of the μ-metrics induced by an Intuitionistic fuzzy metric M, N is characterized by the FD condition on M, N. We 

have also provided two different approximations of the metric induced from the Intuitionistic fuzzy metric, through 

upper μ-metrics and lower μ-metrics.  
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