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ABSTRACT: In this research paper, the researchers present an indispensable and adequate condition for 

the existence of Ψ-bounded solution for the linear non- homogeneous Lyapunov matrix differential system 

on R. Besides, it is given a result in connection with the asymptotic behaviour of the Ψ- bounded solutions 

of a linear non- homogeneous Lyapunov matrix differential equation. 

 
1. INTRODUCTION 

Differential equations provide a common description of experimental evalu- ation 

phenomena and in most of the cases, mathematical models are analyzed with regard to 

differential equations. In fact, the boundedness of solutions is strongly related to the 

examination of numerical discretization for the differ- ential equations. In this paper, we 

define Ψ - bounded solution for the matrix differential equation and establish a required 

indispensable and adequate con- dition for the existence of Ψ - bounded solutions of 

matrix differential system for the linear Lyapunov system on R of the form 

(1.1) ZJ(τ ) = A(τ )Z(τ ) + Z(τ )B(τ ) + R2(τ ) + F (τ ) 

This paper investigates the existence of at least one Ψ - bounded solution for the linear 

matrix differential equation on R of the form 

ZJ(τ ) = A(τ )Z(τ ) + R2(τ ) + F (τ ) 
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and then using vectorization operator and Kronecker product of matrices, we try to give 

the solution to the same problems for the linear Lyapunov matrix differential systems on R of 

the form (1.1)and has at least one Ψ - bounded solution on R for every continuous and Ψ - 

integrable matrix function F on R. where A,B are an (n × n) matrices and Z is a column 

vectors of orders (n × 1) respectively. 

This paper is organized as follows: In section 2, we can provide some basic definitions, 

notations, hypothesis and results that are useful and we present the general solution of (1.1). 

Section 3 presents a criteria for the existence of at least one Ψ - bounded solutions of a 

linear non-homogeneous Lyapunov matrix differential equation(1.1) 

Kronecker product of linear systems and its applications in two-point bound- ary value 

problems were first introduced by Murty and Fausett [12] in 2002. Many results followed 

after this basic paper in control theory and in systems analysis in [11].   Recently, the 

indispensable of at least one Ψ-bounded solu- tion of equation (1.1) on R for distinct types of 

functions have been studied in [2],[3],[4],[5],[6],[7],[8][9].   In [7–9], Kasi Viswanadh 

V.Kanuri etl., present the novel concept of Ψ-boundedness of solutions, Ψ being a 

continuous matrix- valued function, allows a better identification of various types of 

asymptotic behavior of the solutions on R. Kasi Viswanadh V. Kanuri, R. Suryanarayana 
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and 

K. N. Murty [7] provide sufficient conditions for the existence and uniqueness of at least 

one Ψ - bounded solution for the linear differential systems on time scales. Recently Kasi 

Viswanadh V Kanuri, Y. Wu, K.N. Murty [8] present a crite- rion for the existence of 

(Φ⊗Ψ) bounded solution of linear first order Kronecker product of system of differential 

equations. 

Thus, the results can be attained, analyzed and extended the recent results concerning the 

boundedness of solutions of the equation (1.1). The method used in our research paper is 

prominently based on the technique and process of Kronecker product of matrices (it has 

been effectively applied in similar prob- lems [4]-[8]) and on a decomposition of the 

underlying space at the initial moment [4]-[9] for finite- dimensional spaces and in general 

case of Banach spaces). 

2. PRELIMINARIES 

In this section, we present some basic definitions, notations, hypothesis and results which 

are useful. 

Definition 2.1. Any set of n-linearly independent solutions ρ1, ρ2, ...ρn of 

 

ρJ(τ ) = A(τ )ρ(τ ) 

is called a fundamental set of solutions and the matrix with ρ1, ρ2, ..., ρn as its columns is 

called a fundamental matrix for the equation (1.2) and is denoted by Φ . The fundamental 

matrix Φ is non-singular. 

Let Rn be the Euclidean n- space. For ρ = (ρ1, ρ2, ρ3, . . . , ρn)
T ∈ Rn, let ǁρǁ = 

max{|ρ1|, |ρ2|, |ρ3|, . . . , |ρn|} be the norm of ρ. 

Let Km×n be the linear space of all m × n matrices with real entries. 

For a n × n real matrix A = (aij), we define the norm |A| = supǁρǁ≤1 ǁAρǁ. 

It is well-known that |A| = max1≤i≤n|{Σn |aij |}. 

Let Ψi : R → (−∞, ∞), i = 1, 2, . . . n, be continuous functions and 

Ψ = diag[Ψ1, Ψ2, . . . Ψn]. 

Let the vector space Rn be represented as a direct sum of three sub spaces Ω−, Ω0, Ω+ 

such that a solution η(τ ) of (1.1) is Ψ-bounded on R if and only if y(0) ∈ η0 and Ψ-

bounded on R if and only if η(0) ∈ Ω− ⊕ Ω0. Also, let ξ−, ξ0, ξ+ denote the corresponding 

projection of Rn onto Ω−, Ω0, Ω+ respectively. 

Definition 2.2. A function f : R → Rn×n is said to be Ψ- bounded on R if Ψ(τ )f (τ ) 

is bounded on R i.e., 

supτ∈R ǁ Ψ(τ )f (t) ǁ< +∞ 

Extend this definition for matrix functions. 

Definition 2.3. A matrix function K : R → Kn×n is said to be Ψ- bounded on R if the 

matrix function ΨK is bounded on R 

i.e., supτ≥0 ǁ Ψ(τ )K(τ ) ǁ< +∞ 

Definition 2.4. A matrix function K : R → Kn×n is said to be Ψ- bounded on R if the 

matrix function Ψ(τ )K(τ ) is bounded on R, 
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j=0 

Σn    11 

η(τ ) = ΦA(τ, τ0)η0 + ΦA(τ, s)f (s)ds 

i.e., there exists 

m >0 such that ǁ Ψ(τ )K(τ ) ǁ< m, for all τ ∈ R 

Definition 2.5. A function f : R → Rn×n is said to be Lebesgue Ψ integrable on R if f is 

measurable and Ψ(τ )f (τ ) is Lebesgue integrable on R 

i.e., 

∫ ∞ 

ǁ Ψ(τ )f (τ ) ǁ dτ < ∞ 

 

Extend this definition for matrix functions. 

Definition 2.6. A function K : R → Rn×n is said to be Lebesgue Ψ integrable on R if K is 

measurable and Ψ(τ )K(τ ) is Lebesgue integrable on R 

i.e., 

∫ ∞ 

ǁ Ψ(τ )K(τ ) ǁ dt < ∞ 

 
Definition 2.7. The vectorization operator V ec : Km×n → Rmn, defined by 

V ecA = (a11, a21, ....... am1, a12, a22, ........ amn)∗ 

where A = aij ∈ Km×n, is called the vectorization operator. 

Lemma 2.1. The vectorization operator V ec : K 
n×

n 

→ Rn2 
is a linear and one to 

one operator. In addition, Vec and V ec−1 are continuous operators. 

Proof. The fact that the vectorization operator is linear and one to one oper- ator. Now,  

for  A   =   (aij)   ∈  Kn×n  ,  we  have  ǁ  V ec(A)   ǁ=   max1≤i≤n | aij  | 

≤ max1≤i≤n
Σn

 
| aij  |  =|  A  |  .  Thus,  the  vectorization  operator  is  continu- 

ous  and  ǁ  V ec  ǁ≤  1.  In  addition,  for  A  =  In,  we  have  ǁ  V ec(In)  ǁ=|  In   | 

and then ǁ V ec  ǁ=  1. We have ǁ V ec− (u)  ǁ=  max1≤i≤n − | un,j+i | ≤ 

n.max1≤i≤n2 | ui | = n.u. Thus, ǁ V ec−1 ǁ is a continuous operator 

Q 

Theorem 2.1. Let A ∈ R be an n × n matrix-valued function on R and suppose that f : R −→ 

Rn is continuous. Let τ0 ∈ R and η0 ∈ Rn. Then the initial value problem 

ηJ(τ ) = A(τ )η(τ ) + f (τ ), η(τ0) = η0 

has a unique solution η : R −→ Rn . Moreover, this solution is given by 

∫ τ 

 τ0 

0 

0 
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where ΦA(τ, τ0) is a fundamental matrix. 

Theorem 2.2. Let P (τ ) and Q(τ ) be fundamental matrices for the dynamical sys- tems 

(2.1) ZJ(τ ) = A(τ )Z(τ ) 

 

(2.2) ZJ(τ ) = Z(τ )B(τ ) 

τ ∈ T +, respectively. Then the matrix W (τ ) = (Q∗(τ ) ⊗ P (τ )) is a fundamental matrix for 

the system 

(2.3) ZJ(τ ) = (In ⊗ A(τ ) + B∗(τ ) ⊗ In)Z(τ ) 

In addition ,P (0) = In and Q(0) = In then W (0) = In2 . 

Proof. Using the above properties of the Kronecker product 

W J(τ ) = (Q∗(τ ) ⊗ P (τ ))J 

= (Q∗)J(τ ) ⊗ P (τ ) + Q∗(τ ) ⊗ P J(t) 

= (QJ)∗(τ ) ⊗ P (τ ) + Q∗(τ ) ⊗ P J(τ )) 

= ((Q(τ )B(τ ))∗(τ ) ⊗ P (τ ) + Q∗(τ ) ⊗ A(τ )P (τ )) 

= (B∗(τ )Q∗(τ ) ⊗ P (τ ) + Q∗(τ ) ⊗ A(τ )P (τ )) 

= (B∗(τ ) ⊗ In)(Q∗(τ ) ⊗ P (τ )) + (In ⊗ A(τ ))(Q∗(τ ) ⊗ P (τ )) 

= (B∗(τ ) ⊗ In) + (In ⊗ A(τ ))(Q∗(τ ) ⊗ P (τ )) 

Therefore, W J(τ ) = (B∗(τ ) ⊗ In) + (In ⊗ A(τ ))W (τ ), 

for all τ ∈ R. 

On the other hand, the matrix Z(τ ) is an invertible matrix for all τ ≥ 0, since 

P (τ ) and Q(τ ) are non singular matrices. Thus the matrix W is a fundumental matrix of R. 

Also W (0) = P (0) ⊗ Q(0) = In ⊗ In = In2 

Then, the matrix (P (τ ) ⊗ Q(τ )) is an invertible matrix for all τ ∈ R.   Thus 

(P (τ ) ⊗ Q(τ )) is the fundamental matrix of (1.1).  Also W (0) = P (0) ⊗ Q(0) = 

In ⊗ In = In2 

Q 

Theorem 2.3. The matrix function P (τ ) is a solution of (1.1) if and only if the vector 

valued function ρ(τ ) = V ec(P (τ )) is a solution of the differential system 

(2.4) ρJ(τ ) = (In ⊗ A(τ ) + B∗(τ ) ⊗ In)x(τ ) + R2(τ ) + f (τ ). 

 

where f (τ ) = V ec(F (τ )). The above system (2.1) is the corresponding kronecker product 

system associated with (1.1). 

Proof. similar 

Q 

Theorem 2.4. The matrix function Z(τ ) is a solution on R of (1.1) if and only if the 

vector valued function z(τ ) = V ec(Z(τ )) is a solution of the differential system 

(2.5) zJ(τ ) = (In ⊗ A(τ ) + B∗(τ ) ⊗ In)z(τ ) + R2(τ ) + f (τ ). 

where f (τ ) = V ec(F (τ )) and R2(τ ) = V ecR2(τ ), on the same interval R. The above 

system (2.2) is the corresponding kronecker product system associated with (1.1). 

Proof. Using Kronecker product notation, the vectorization operator Vec and the above 

properties, we can rewrite the equality(1.1) in the equivalent form 
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∫ 

∫ 

1 

∫ 

∫ 

1 

| 

 ̂

V ecZJ(τ ) = (In ⊗ A(τ ) + B∗(τ ) ⊗ In)V ecZ(τ ) + V ecR2(τ ) + V ecf (τ ), 

for all τ ≥ 0. 

If we denote V ecZ(τ ) = z(τ ), V ecF (τ ) = f (τ ) and V ecR2(τ ) = R2(τ ) and then, 

the above equality becomes 

zJ(τ ) = (In ⊗ A(τ ) + B∗(τ ) ⊗ In)z(τ ) + R2(τ ) + f (τ ), 

for almost all τ ≥ 0. 

The proof is now complete. Q 

Theorem 2.5. The matrix function Z(τ ) is Ψ - bounded on R of (1.1) if and only if the 

vector function V ec(Z(τ )) is (In ⊗ Ψ) - bounded on R. 

Proof. similar 

Q 

Theorem 2.6. If A is a continuous n × n real matrix on R then, the system ρJ(τ ) =  

A(τ )ρ(τ ) + R2(τ ) + f (τ ) has at least one Ψ bounded solution on R for every continuous 

and Ψ- bounded function f on R if and only if for the fundamental matrix Q(τ ) of the system P 
J(τ ) = A(τ )P (τ ) there exists a positive constant σ such that, for τ ≥ 0, 

 

 

 

τ 

|Ψ(τ )Q(τ )ξ−Q−1 

−

∞ 

 

(s)Ψ−1 (s)(R2(s) + f (s))|ds+ 

(2.6) 
τ 

Ψ(τ )Q(τ )ξ0Q−1 

0 

(s) Ψ−1 (s)(R2(s) + f (s))|ds+ 

∫ ∞ 

|Ψ(τ )Q(τ )ξ Q−1(s)Ψ−1(s)(R2(s) + f (s))|ds ≤ σρ. 

τ 

Here ξ−, ξ0 and ξ1 are supplementary projections for the system ZJ(τ ) = A(τ )Z(τ ). 

Proof. We prove this theorem by means of Banach fixed point theorem. Consider 

SΨ = {Z : R → Kn×n, Z is continuous and Ψ - bounded on R 

SΨ is Banach space with respect to the norm | Z | = supτ∈R ǁ Ψ(τ )Z(τ ) ǁ. Let Sρ = {Z 

∈ SΨ | Z |Ψ≤ ρ}. For Z ∈ SΨ, 

Now, 

0 

|(P (τ )ξ−P 

−

∞ 

−1
(s)(R2(s) + f (s))|ds+ 

τ 

|(P (τ )ξ̂0P 

 

−1
(s)(R2(s) + f (s))|ds+ 

∫ ∞ 

|(P (τ )ξ^ P −1(s)(R2(s) + f (s))|ds. 

τ 

From hypotheses, T exists and is continuous differentiable on R. For Z ∈ Sρ 

and τ ∈ R, we have 

0 
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∫ 

∫ 

1 

∫ τ 

1 

 ̂

 

0 

|Ψ(τ )(P (τ )ξ−P 

−

∞ 

−1(s)Ψ−

1 

(s)Ψ(s)(C(s) + f (s))|ds+ 

τ 

|Ψ(τ )(P (τ )ξ̂0P 

 

−1(s)Ψ−

1 

(s)Ψ(s)(C(s) + f (s))|ds+ 

∫ ∞ 

|Ψ(τ )(P (τ )ξ^ P −1(s)Ψ−1(s)Ψ(s)(C(s) + f (s))|ds. 

implies τ 

 

 

0 

|Ψ(τ )(P (τ )ξ̂−P 

 

−1(s)Ψ−

1 

 

(s) || Ψ(s)(C(s) + f (s))|ds+ 

−

∞ 

|Ψ(τ )(P (τ )ξ̂0P 

 

 

−1(s)Ψ−

1 

(s) || Ψ(s)(C(s) + f (s))|ds+ 

∫ ∞ 

|Ψ(τ )(P (τ )ξ^ P −1(s)Ψ−1(s) || Ψ(s)(C(s) + f (s))|ds. 

τ 

 

0 

0 

∫ 
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1 

|(Q (τ ) ⊗ (Ψ(τ )P (τ ))ξ−((Q ) 
(s)Ψ 

|(Q (τ ) ⊗ Ψ(τ )P (τ ))ξ0((Q ) 

(s) ⊗ (P 
(s)Ψ 

(s)))|ds+ 

 

≤ σρ 

Q 

Theorem 2.7. Suppose that: 

1. The fundamental matrix P (τ ) of the system ZJ(τ ) = A(τ )Z(τ ) satisfies the 

condition(2.6)for all t ≥ 0, 

2. The continuous and Ψ bounded function f : R → Rn is such that 

limτ−→∞ ǁ Ψ(τ )ρ(τ ) ǁ= 0. 

Then , every Ψ bounded solution ρ of the system ρJ(τ ) = A(τ )ρ(τ ) + f (τ ) is such that 

limτ−→∞ ǁ Ψ(τ )ρ(τ ) ǁ= 0. 

3. EXISTENCE OF Ψ - BOUNDED SOLUTIONS FOR THE  NON-

HOMOGENEOUS 

LYAPUNOV SYSTEMS 

In this section we present the existence of Ψ bounded solutions for the non- 

homogeneous Lyapunov matrix differential equation(1.1). 

Theorem 3.1. Let A(τ ) and B(τ ) be continuous n × n real matrix function on R and let P 

and Q be the fundamental matrices of the homogeneous linear equations (2.1) and (2.2) 

respectively for which P(0) = Q(0) = In. Then, the equation (1.1) has at least one Ψ 

bounded solution on R for every continuous and Ψ bounded matrix function F : R → Rn×n 

if and only if there exists supplementary projections ξ−, ξ0, ξ1 ∈ Kn×n and a positive constant 

σ such that, for all τ ≥ 0, 

 

∫ τ

 

∗
 

 

 

^ ∗ 

−1 

 

−1 −1 

(3.1) ∫ τ

 

∗
 

 

 

^ ∗   

−1 
−1 −1 

∫  ∞ 

|(Q∗(τ ) ⊗ (Ψ(τ )P (τ ))ξ̂  ((Q∗)−1(s) ⊗ (P −1(s)Ψ−1(s)))|ds ≤ σ. 

τ 

Proof. First, we prove the “only if” part. suppose that the system (1.1) has at least 

one Ψ-bounded solution on R for every continuous Ψ bounded matrix 

function F  : R → K 
n×

n 
.  Let f : R → Rn2 

be a continuous and I 
⊗ Ψ - 

bounded function on R. From theorem (2.5),it follows that the matrix function 

0 

−∞ 

(s) ⊗ (P (s)))|ds+ 

n 
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∫ 

∫ 

|(In ⊗ Ψ(τ ))(Q  (τ ) ⊗ P (τ ))ξ−(Q  (s) ⊗ P (s)) (In ⊗ Ψ(s)) 

|(In ⊗ Ψ(τ ))(Q  (τ ) ⊗ P (τ ))ξ0(Q  (s) ⊗ P (s)) (In ⊗ Ψ(s)) 

|(Q (τ ) ⊗ Ψ(t)P (τ ))ξ−(Q ) 
(s)Ψ 

|(Q (τ ) ⊗ Ψ(τ )P (τ ))ξ0(Q ) (s) ⊗ P 

(s)Ψ 

 ̂

n 

 

F (τ ) = V ec−1(f (τ )) is continuous and bounded on R. From the hypothesis, the equation 

ZJ = A(τ )Z(τ ) + Z(τ )B(τ ) + V ec−1(f (τ )) 

has at least one Ψ bounded solution Z(t) on R. 

From theorem (2.4) and (2.5),it follows that the vector valued function z(τ ) = V ec(z(τ )) 

is a In⊗Ψ - bounded solution on R of the differential system(2.5).Thus, this system has at 

least one In ⊗ Ψ bounded solution on R for every continuous and In ⊗Ψ bounded function f 

on R. From the Theorem (2.6) , there is a positive constant K such that the fundamental 

matrix W(t) of the equation (2.6) satisfies the condition 

0 

|(In ⊗ Ψ(τ ))W (τ ))ξ−W 

−

∞ 

−1
(s)(In ⊗ 

Ψ(s))−1 

ds|+ 

τ 

|(In ⊗ Ψ(τ ))W (τ ))ξ̂0W 

 

−1
(s)(In ⊗ 

Ψ(s))−1 

ds|+ 

∫  ∞ 

|(I 

for all τ ≥ 0. 

⊗ Ψ(τ ))W (τ ))ξ̂−W −1(s)(In ⊗ Ψ(s))−1ds| ≤ k 

By theorem (2.2), we have W (τ ) = Q∗(τ ) ⊗ P (τ ). 

Now the above equation becomes 

∫ 0 
∗

 

 

 

^ ∗ −1 −1 

∫ τ

 

∗
 

 

 

^ ∗ −1 −1 

∫  ∞ 

|(I   ⊗ Ψ(τ ))(Q∗(τ ) ⊗ P (τ ))ξ̂  (Q∗(s) ⊗ P (s))−1(I 

1

 

n 

 

⊗ Ψ(s))−1ds| ≤ σ 

for all τ ≥ 0. 

∫ 0 
∗

 

 

 

 

^ ∗ 

−1 

 

 

 

−1 −1 

∫ τ

 

∗
 

 

 

^ ∗  

−1 
−1 −1 

0 

−∞ 

τ 

0 

−∞ 

0 

τ 

ds|+ 

ds|+ 

(s) ⊗ P 
(s)ds|+ 

(s)ds+ 

n 
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1 

∫  ∞ 

|(Q∗(τ ) ⊗ Ψ(τ )P (τ ))ξ̂  (Q∗)−1(s) ⊗ P −1(s)Ψ−1(s)ds| ≤ σ 

τ 
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| | 

| | 

|(Q (τ )(Q ) (s) ⊗ (Ψ(τ )P (τ ))ξ−P (s)Ψ 

|(Q (τ )(Q ) (s) ⊗ (Ψ(τ )P (τ ))ξ0P 

(s)Ψ 

|(Q (τ )(Q ) 

(s) ⊗ (Ψ(τ )P (τ ))ξ1P (s)Ψ 

 

The above equation can be written as 

∫ 0

 

∗
 

 

 

 

∗  
−1 

^  −1 −1 

∫ τ

 

∗
 

 

 

∗  
−1 

^ −1 −1 

∫ 0

 

∗
 

 

 

∗  
−1 

^ −1 −1 

Now, we prove the "if" part. Suppose that equation(2.6) holds for some σ > 0 

and for all t ≥ 0. 

Let F  :  R → Kn×n is continuous and Ψ - bounded matrix function on R. 

From theorem (2.5), it follows that the vector valued function f (τ ) = V ec(F (τ )) is 

continuous and In ⊗ Ψ bounded function on R. From this, equation(2.6), it follows 

that the differential system (3.1) has at least one In ⊗ Ψ bounded solution on R . Let z(τ ) 

be the solution. From theorem(2.4) and theorem(2.5), 

it follows that the matrix function Z(τ ) = V ec−1(z(τ )) is a bounded solution on of the 

equation (1.1) (because F (τ ) = V ec(f (τ ))). Thus, the differential equation (1.1) has at 

least one bounded solution on for every continuous and bounded solution F on R . The 

proof is now complete. 

Q 

Theorem 3.2. Suppose that: 

1) The fundamental matrices P (τ ) and Q(τ ) of (2.1) and (2.2) respectively 

(P (0) = Q(0) = In) satisfy the condition (3.1) for some σ ≥ 0 and for all τ ≥ 0 . 

2) The continuous matrix function F : R → Kn×n a continuous and Ψ- bounded 

matrix function on R satisfies the condition 

lim Ψ(τ )F (τ )  = 0. 

τ →∞ 

Then, every Ψ- bounded solution Z(τ ) of (1.1) satisfies the condition 

lim Ψ(t)Z(τ )  = 0. 

t→∞ 

Proof. Let Z(τ ) be a Ψ- bounded solution of (1.1). From theorem(2.4)and the- orem(2.5), it 

follows that the function X(τ ) = V ec(x(τ )) is a In ⊗ Ψ - bounded solution on R of the 

differential system 

(3.2) zJ(τ ) = (In ⊗ A(τ ) + B∗(τ ) ⊗ In)z(τ ) + f (τ ). 

where f (τ ) = V ec(F (τ )) . 

τ 

0 

−∞ 

(s)ds|+ 

(s)ds|+ 

(s)ds| ≤ σ 
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| | 

 

Also, from the proof of theorem(2.7), we have 

(3.3) ǁ (In ⊗ Ψ(τ ).f (τ )) ǁRn2 ≤ |Ψ(τ )F (τ )|, τ ≥ 0. 

then 

lim 

τ 

→

∞ 

ǁ (In ⊗ Ψ(τ ).z(τ )) ǁRn2 = 0. 

Now, from the proof of theorem(2.7) again, we have 

(3.4) |Ψ(τ )Z(τ )| ≤ n ǁ (In ⊗ Ψ(τ ).z(τ )) ǁRn2 , τ ≥ 0 

and then 

lim Ψ(τ )Z(τ )  = 0. 

τ →∞ 

The proof is now complete. Q 
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