
Turkish Journal of Computer and Mathematics Education       Vol.12 No.11 (2021), 1986-1997 

                                                                                                                     Research Article                                                           

1986 

Analyzing and Forecasting of Electricity Consumption by Integration of Autoregressive 

Integrated Moving Average Model with Neural Network on Smart Meter Data 
 

M. Suresha, Anbarasi. M.Sb  

 
aAssistant Professor, Department of Information Technology, Manakula Vinayagar Institute of Technology, 

Pondicherry, India. 
bAssistant Professor, Department of Information Technology, Pondicherry Engineering College, Pondicherry,  

India. 

 

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published 

online: 10 May 2021                                                 

 

Abstract: Smart metering is a recently developed research area over the globe and it appears to be a remedy for 

increasing prices of electricity. Electricity consumption forecasting is an essential process in offering intelligence 

to smart girds. Rapid and precise forecasting allows a utility provider to plan the resources and also to take control 

actions to balance the electricity supply and demand. The customers will advantage from the metering solutions 

by a greater understanding of their own energy utilization and forthcoming projections, allowing them to 

effectively manage the cost of their consumption. In this view, this paper presents an Integration of Autoregressive 

Integrated Moving Average (ARIMA) Model with Neural Network (NN) for Electricity Consumption Forecasting 

using Smart Meter Data. As the time series data often does not hold linear as well as nonlinear patterns, ARIMA 

or NN models are not enough to model and predict the time series data. The ARIMA-NN model will be trained 

using the data and generates a model. Afterward, the generated model can be utilized to predict the electricity 

consumption by the application of new building data. The proposed ARIMA-NN model is evaluated and the 

simulation outcome strongly pointed out its superior performance over the compared methods. The presented 

model has obtained effective testing performance with the MAPE of 25.53, an accuracy of 48.38, and MSE of 

0.21. 
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1.  Introduction 
At present days, significant attention has been paid to smart electricity networks, where improved control 

over electricity supply and utilization is going to be attained due to the development of Advanced Metering 

Infrastructure (AMI). Smart metering becomes more familiar and it serves as an essential process to achieve 

defined policies, reduces the greenhouse gas emission, improves the energy efficiency, and ensures the energy 

required by renewable energy sources. Smart metering models become a portion of micro-grid that comprises 

diverse operational and energy metrics like smart appliances, renewable energy resources, and energy-efficient 

resources. An important issue associated with the operation of micro-grids is the optimum energy management of 

housing buildings based on multiple and overlapping objectives [1]. Presently, smart grid vision and smart home 

concepts are commonly employed for optimizing the utilization of energy and reduces electricity bills.  

 

The development of the smart home energy management model becomes a wide global priority for 

supporting the trend towards a more sustainable and reliable energy supply for smart grids [2–5]. Initially, a new 

metering infrastructure is defined for ensuring the automatic reading and billing depending upon the present 

utilization. Next to that, through the accumulation of high-frequency utilization data, the system should fulfil the 

needs for the design of cost-reflective prices, varying concerning the time of utilization. Afterward, these metering 

models aim to the contribution to the minimization of the total energy utilization by raising the energy awareness 

of the users.  

 

An essential aspect of smart metering models offers encouragement to the users for the utilization of 

lower electricity by being effectively informed regarding the utilization pattern. The prediction offers the users 

with the likelihood of connecting the present utilization behaviors with future costs. So, the user gets beneficiary 

from the prediction solutions by thoroughly understanding the individual energy utilization and their expectations, 

enabling them to effectively manage the cost of utilization. Through the transparent usage of energy and future 

projections, it is easier to interpret how much it affects economics in the upcoming days. Numerous models have 

been devised for electricity load forecasting. Few of the familiar time series analysis with the autoregressive 

integrated moving average (ARIMA) model, fuzzy logic, neuro-fuzzy model, artificial neural networks (ANNs), 

and support vector machines (SVMs).  
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Few fascinating instances of electricity forecasting on the individual household level are provided here. 

[6] intended to compute which machine learning (ML) model offered optimal prediction results for the entire 

building energy utilization for the subsequent hour. The outcome exhibited that the LS-SVM provides the optimal 

outcome in the prediction of the home’s future electrical utilization. Generally, the presented model offered MAPE 

of 1.6-13.41% for a 700kWh commercial building and around 15-32% for 3 homes with mean expenditure closer 

to 1.5 kWh. In [7], high-resolution data from a set of three private households gathered for a month has been 

examined. The experimental outcome indicated that the recent prediction models offer better forecasting. 

Depending upon the disaggregated data from smart homes, sensors with perseverance and smart meter 

benchmarks disclose-considerable estimate enhancements of 4-33% to mean absolute error.  

 

In [8], diverse models have been employed for predicting peak demand in separate homes. It is revealed 

that the home’s historic peak load and tenancy is an effective predictor of peak load compared to season. It is 

represented that Seasonal Auto-Regressive Moving Average (SARMA) can be employed for modeling the 

intrinsic load pattern and user movement in a home and that it has a 30% lower mean square error compared to 

regression-based models. In [9], Kalman filter-based prediction technique leads to load forecasting with the 

MAPE of 30% for a sampling period and predicts a horizon identical to an hour. Small-time duration among the 

reception of real-time measurement data from customers’ smart meter enhanced the accurateness of the presented 

model and results in the MAPE of almost 13%. In [10], depending upon the power expenditure readings from 23 

homes gathered over Japan, a support vector regression technique and an activity sequence-driven model are 

developed to infer upcoming actions and improves load prediction. The activity sequence variable turns out to be 

a significant characteristic that can enhance the accuracy of load prediction by 15 minutes in advance for 

individual houses, reaches up to 42% MAPE on average. 

 

In [11], several prediction models have been developed with the predicting horizons ranges from 15 

minutes to 24 hours. The validation of the model takes place on two datasets namely one household in Germany 

and 6 households in the United States. The outcome pointed out that the predictive accuracy is mainly based on 

the selection of prediction model and parameter setting. In [12], an electricity load prediction model based on the 

individual household level by the use of CART, SVM, and MLP, NNs for 24-hour short-term load forecasts has 

been presented. It is revealed that an integration of the past utilization data and household pattern data could 

mainly improve the prediction of every user load. The results of 51% MAPE are reached and 48% is obtained by 

SVM. 

 

This paper presents a new load forecasting at the household level. The precise forecasting of time series 

data has inspired the researchers to propose new techniques for load management. Since the time series data often 

does not hold linear as well as nonlinear patterns, ARIMA or NNs (NN) are not enough to model and predict time 

series data. This paper presents a hybridization of the ARIMA and NN model to make use of the advantages of 

time series models and NN. The proposed ARIMA-NN model is evaluated and the simulation outcome strongly 

pointed out its superior performance over the compared methods. 

 

The subsequent portions are arranged as follows. Section 2 offers the presented ARIMA-NN model and 

Section 3 evaluates the ARIMA-NN model. Section 4 concludes. 

 

2. The proposed ARIMA-NN model 

Fig. 1 shows the overall processes involved in the ARIMA-NN-based electricity forecasting in smart meters. 

Initially, the data is gathered from various sources such as datasets, actual readings, and calculations. Then, the 

ARIMA-NN model will be trained using the data and generates a model. Afterward, the generated model can be 

utilized to predict the electricity consumption by the application of new building data. The detailed operation of 

the ARIMA-NN model will be discussed in the following subsections.  
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Figure 1. Block diagram of ARIMA-NN based electricity prediction 

 
2.1. ARIMA modeling approach 

φp(B)ΦJ(Bs)∇k∇s
Dzf = θl(B)ΘL(Bs)at(1)ARIMA [13] consists of a future value with the 

parameter of the linear function that is obtained from various monitoring results as well as random faults. The 

ARIMA technique could be defined as ARIMA (j, k, l)(J, k, L)s, where(j, k, l) denotes the non-seasonal 

portion of a method (P, D, Q)s is assumed to be the seasonal part of the proposed technique that is described as 

follows  

 

where j denotes the sequence of non-seasonal autoregression, k indicates the number of general differentiation, 

implies the linearity of non-seasonal MA, J signifies the order of seasonal autoregression, K specifies the count 

of seasonal difference, L is assumed to be ordered in seasonal MA, s reflects the length of periodicity, φresembles 

the AR operator in order j, j, Φ is a seasonal AR parameter from order J, ∇k denote the varying operator,∇S
K

 is a 

seasonal differencing operator, zr implies a monitored value at time t, θ indicate the MA operator of order l, Θ 

is seasonal MA parameter in order L as well as at shows the noise of stochastic technique which is considered as 

NID(0, σ2) . 

ARIMA modeling scheme has 3 major levels that are given below: 

 

• Model identification 

• Parameter calculation   

• Diagnostic monitoring 

 The process of identifying normal form has two phases are, 

• The required differencing of series could be determined to attain the stationery as well as normality. 
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• The temporal association of transferred data might be discovered by analyzing the autocorrelation (ACF) 

and Partial Auto Correlation (PACF) functions.  

 

In addition, ACF is assumed to be applicable in measuring primary values with the series of later values. 

PACF indicates of correlation among a parameter and lagging the correlations from the lower order. By 

assuming the graphs of ACF and PACF that are attained by electricity load concentration sequence, diverse 

different ARIMA techniques have been discovered for selecting models. Any method that offers a lower Akaike 

Information Criterion (AIC) can be chosen as an optimal fitting approach. Hence, the arithmetic form of AIC is 

presented as  

AIC = n( ln ((2πRSS)/n) + 1) + 2m                                (2) 

where m = (j + l + J + L) is several terms evaluated from the technique as well as RSS displays the 

combination of squared residuals. 

Once the models of ARIMA have been illustrated, the attributes of such functions should be calculated. 

If a proper method is selected then parameters could be computed with the application of the Box-Jenkins method 

that analyzes the remaining model of adequate series. Various samples have been deployed for diagnostic 

observation in determining the residuals of chosen ARIMA from ACF and PACF graphs are not based on other 

frameworks. When normality metric is not given, the observations have been obtained in provided by a Box-Cox 

transformation. To accomplish a better forecasting method, residuals that are retained with the fitting model, 

should convince the needs of the white noise process. For computing, the electricity load time series is a dependent 

or independent, Residual Auto-Correlation (RACF) function is worked from the survey. Initially, a correlogram 

is obtained by segmenting the remaining ACF function in contrast with the lag value. In the case of ineffective 

ARIMA, the evaluated autocorrelations of residuals have been uncorrelated and distributed with the gradual value 

of zero.  

Alternatively, Ljung-Box-Pierce statistics have been introduced to test the empty hypothesis of present 

autocorrelations as white noise; test statistics can be measured for a diverse number of prior lagged 

autocorrelations with the help of Ljung−Box−Pierce statistics (L(r) test) to test the accuracy of this method. 

Thus, D(r)values have been related to the crucial test of (χ2) distribution in terms of the degree of freedom with 

minimum significance. Finally, the cumulative period gram is applied for analyzing the white noise series. While 

the seasonal time is modeled in the proposed work, the periodic features of electricity load concentration-time 

cannot be considered. Hence, the regularities present in residuals must be examined. 

 

2.2 Structure of NNModel 

From several other NN infrastructures, the three-layer-feed forward back propagation system is generally 

applied. The architecture is comprised of a single hidden layer of neurons along with transfer functions as well as 

an external layer of linear neurons and linear transfer functions. The graphical representation of the back 

propagation network is depicted in Fig. 2, where Xa(a = 1,,N) is the input variables; ni(I = I,,S) denotes the outcome 

of neurons in the hidden layer and yb (b = I,,L) denotes the final result of NN. In general, NN should be trained 

for determining the values of intensity that produce the accurate result. From the training level, a group of input 

data has been applied in training the networks for several times. Therefore, the back propagation technique adapts 

the weights present in the steepest descent direction (SDD). This is the process of decreasing operation in a rapid 

manner. However, the fundamental gradient descent learning model is worse when compared with other models 

in terms of accuracy and efficiency. The optimization point states that training provided for NN could be assumed 

as similar to reduce the overall error from network intensity. To overcome the complexities, various learning 

techniques have been proposed namely resilient backpropagation, Levenberg-Marquardt as well as conjugated 

gradient backpropagation. A major technology was established named as Scaled Conjugate Gradient (SCG) 

approach. Hence, SCG training models are mainly used in removing the time conservation inline search. From 

the conjugate gradient model, and exploring operation is processed including conjugate dimensions that provides 

a rapid convergence when compared with SDD. Furthermore, the distinct backpropagation method is applied in 

NN training which measures the gradient value of global error function in terms of weights,  f(W) , for all process 

k, and advanced weights based on  

Wu+1 = Wu − αu∇f(Wu)                                         (3) 
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The step size αu > 0 is assumed to be a user-selected training parameter that influences the operation of the 

learning model in a vast range. For every case, the backpropagation technique follows a zigzag mechanism in a 

lower, typical of steepest gradient descent approach. Subsequently, the conjugate gradient model eliminates the 

zigzag process for a definite point by integrating the particular association between direction and gradient vector 

at alliteration. When Dk   points the dimensional vector for iteration K , then weight vector is upgraded as  

Wu+1 = Wu + αuDu                                                        (4) 

The provided values of Wu and Du , a specific measure of αK  minimizes objective function to a greater extent. 

once the minimum number of processes is carried out the searching line direction is useful in identifying the 

optimal size of the original minimum. By calculating the maximum step size along with the SCG learning 

technique improves the speed of training as well as to removes the base of crucial user-selected attributes. A major 

opinion of this technique is to apply the factor ρ that is increased with all process from implementing the model 

by the quantity  δu, that states a Hessian matrix is not positive definite. A detailed technology of SCG in NN could 

be computed. 

 

Fig. 2. Structure of feed-forward NN 

2.3  Hybrid Model 

The basic nature of electricity load data cannot be captured easily using the stand-alone technique due to 

the presence of different features like seasonality, heteroskedasticity, and so on. The approximate value of ARIMA 

is difficult to identify and not adequate. Besides, the application of the ANN technique is to hold the maximum 

result. [14] defined that it is ineffective to be applied in ANN which is not applicable for any data type. Hence, 

the hybrid technique with linear and nonlinear abilities is termed as the best model to predict the electricity load 

data. By the integration of various factors, the above criteria are obtained. As same as the hybrid model structure, 

an electricity load time series is comprised with a linear autocorrelation as well as a nonlinear unit as, 

yb = Lb + Sb                                                               (5) 

Where Lb  is the series component and Sf implies non-linear element. The variable with time series data has been 

computed. The primary ARIMA would be deployed in capturing the linear unit and residuals are attained from 

the linear technique would have a nonlinear correlation. The residuals of hb in time t  is obtained from the 

sequential model as  
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hb = yb − Lb̂                                                             (6) 

Where  L̂b is assumed to be detected value of ARIMA method in time t . The analysis of residuals is mandatory 

in computing the accuracy of ARIMA. An ARIMA is not enough when there is a linear correlation structure that 

is presented in residuals. But, diagnostic checking of residuals must be pointed to for predicting the nonlinear 

patterns in sequential information. If the residuals are passed by diagnostic check, the method is sufficient in 

nonlinear relationships which are not exactly designed respectively. Hence, the residuals are capable of labeling 

with the help of ANN to find non-linear relationships. Using N input nodes, the ANN residuals would be provided 

as  

hb = g(hb−1, hb−2, … . , hL−N) + εr (7) 

Where g represents the non-linear notation computed by NN as well as εt implies the random error. At last, 

integrated detection would be as  

yb̂ = Lb̂ + Sb̂ (8) 

3. Performance Evaluation 

 
3.1. Dataset Description 

For the validation of the presented ARIMA-NN model, it is tested using a UK Smart Meter dataset. The 

dataset contains a set of features comprises of a Household id, Plans used (standard or dynamic time of use), Date 

and Time, Meter readings (Kwh), and Acorn groups [15]. Fig. 3 shows the distribution of the household energy 

consumption from smart meters.  

 

Figure 3: Smart Meter Power Consumption Distribution 

3.2. Results analysis 

Fig. 4 shows the results attained by the ARIMA-NN model concerning the actual and predicted energy 

usage of the top three household instances namely MAC000018, MAC000020, and MAC000021. The figures 

showcased that the ARIMA-NN model exhibits better prediction and there is only a slight variation exists between 

the actual and predicted energy utilization.  
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Table 1 shows the results offered by the presented model concerning MSE on three should dataset. From 

the table, it is evident that the MSE attained under the MAC000018, MAC000020 and MAC000021 are 0.018, 

0.015, and 0.029 respectively. These minimal values portrayed the superior results of the presented ARIMA-NN 

model. 

 
Figure 4. Top Three Households Energy Consumption Actual and Predicted 

 

Table 1Analysing of Expected and Predicted Energy Consumption Analysis of Different Households with 

Mean Square Error  

S.No 

MAC000018 MAC000020 MAC000021 

Expected Predicted Expected Predicted Expected Predicted 

1 0.247 0.15963742 0.237 0.23562519 0.389 0.42244044 

2 0.247 0.22582980 0.237 0.31441220 0.389 0.40467978 

3 0.247 0.22251885 0.237 0.30714953 0.389 0.39447706 

4 0.247 0.23229535 0.237 0.28566218 0.389 0.38810403 

5 0.247 0.23769158 0.237 0.28879402 0.389 0.39204355 

6 0.247 0.24168594 0.237 0.23421417 0.389 0.39106136 

7 0.247 0.24699919 0.237 0.23699951 0.389 0.38899704 

8 0.247 0.24699918 0.237 0.23699951 0.389 0.38899704 
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9 0.247 0.24699918 0.237 0.23699951 0.389 0.38899704 

10 0.247 0.24699919 0.237 0.23699951 0.389 0.38899705 

MSE= 0.018 MSE = 0.015 MSE = 0.029 

 

Table 2 shows the results attained by the ARIMA-NN model on the training data with compared methods 

in terms of MAPE, accuracy, and MSE. The table values indicated Fgmethod offered poor results over the 

compared methods with the MAPE of 51.86, the accuracy of 34.28, and MSE of 0.72. Then, the Z24 model shows 

a slightly better outcome over Fgwith the MAPE of 42.94, the accuracy of 40.90, and the MSE of 0.61. Afterward, 

the ARIMA model shows moderate results with the MAPE of 38.24, the accuracy of 31.01, and the MSE of 0.35. 

Next to that, the SVR model shows moderate results with the MAPE of 28.73, an accuracy of 43.98, and MSE of 

0.35. The NNET model attains a MAPE of 32.39, an accuracy of 39.99, and an MSE of 0.34. Simultaneously, 

L_f, L_b, and RPART models show somewhat manageable and near-identical results. The L_f model attains the 

MAPE of 36.08, the accuracy of 34.37, and the MSE of 0.32. The L_b model attains the MAPE of 36.03, the 

accuracy of 34.51, and the MSE of 0.32. The RPART model attains the MAPE of 37.08, an accuracy of 36.36, 

and an MSE of 0.32. At the same time, the KNN and proposed ARIMA-NN model offers superior and competitive 

results compared to other methods. The ARIMA-NN model attains a MAPE of 27.80, an accuracy of 44.32, and 

an MSE of 0.31. 

Table 2 Result Analysis using Training Data on Proposed vs Existing Methods 

Model MAPE (%) Accuracy (%) MSE 

Proposed 27.80 44.32 0.31 

Z24 42.94 40.90 0.61 

Fg 51.86 34.28 0.72 

ARIMA 38.24 31.01 0.35 

L_f 36.08 34.37 0.32 

L_b 36.03 34.51 0.32 

KNN 33.36 36.15 0.31 

RPART 37.08 36.36 0.32 

RF 0.48 100.00 0.00 

NNET 32.39 39.99 0.34 

SVR 28.73 43.98 0.35 

 

Table 3Result Analysis using Validation Data on Proposed vs Existing Methods 

Model MAPE (%) Accuracy (%) MSE 

Proposed 28.12 45.34 0.39 

Z24 40.33 43.68 0.59 

Fg 45.74 37.59 0.77 
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ARIMA 50.60 18.57 0.49 

L_f 33.72 35.81 0.43 

L_b 34.19 35.07 0.40 

KNN 35.01 33.28 0.39 

RPART 38.69 37.00 0.42 

RF 32.72 37.89 0.39 

NNET 32.19 41.60 0.41 

SVR 28.95 44.43 0.46 

 

Table 3 shows the results attained by the ARIMA-NN model on the Validation data with compared 

methods in terms of MAPE, accuracy, and MSE. The table values indicated Fgmethod offered poor results over 

the compared methods with the MAPE of 45.74, the accuracy of 37.59, and MSE of 0.77. Then, the Z24 model 

shows a slightly better outcome over Fgwiththe MAPE of 40.33, the accuracy of 43.68and the MSE of 0.59. 

Afterward, the ARIMA model shows moderate results with a MAPE of 50.60, an accuracy of 18.57and an MSE 

of 0.49. Next to that, the SVR model shows moderate results with the MAPE of 28.95, an accuracy of 44.43and 

MSE of 0.46. The NNET model attains a MAPE of 32.19, an accuracy of 41.60and an MSE of 0.41. 

Simultaneously, L_f, L_b, and RPART models show somewhat manageable and near-identical results. The L_f 

model attains the MAPE of 33.72, the accuracy of 35.81and the MSE of 0.43. The L_b model attains the MAPE 

of 34.19, the accuracy of 35.07and the MSE of 0.40. The RPART model attains the MAPE of 38.69, an accuracy 

of 37.00and the MSE of 0.42. At the same time, the KNN and proposed ARIMA-NN model offers superior and 

competitive results compared to other methods. The ARIMA-NN model attains the MAPE of 28.12 accuracies of 

45.34and MSE of 0.39. 

Table 4 Result Analysis using Testing Data on Proposed vs Existing Methods 

Model MAPE (%) Accuracy (%) MSE 

Proposed 25.53 48.38 0.21 

Z24 37.69 45.83 0.44 

Fg 56.27 37.80 0.63 

ARIMA 41.14 20.83 0.26 

L_f 36.50 35.71 0.23 

L_b 36.05 33.63 0.22 

KNN 30.27 41.37 0.22 

RPART 38.50 35.12 0.24 

RF 32.57 41.07 0.22 

NNET 30.28 42.26 0.21 

SVR 26.78 47.02 0.23 
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Table 4 shows the results attained by the ARIMA-NN model on the testing data with compared methods 

in terms of MAPE, accuracy, and MSE. The table values indicated Fgmethod offered poor results over the 

compared methods with the MAPE of 45.74, the accuracy of 37.59, and MSE of 0.77. Then, the Z24 model shows 

a slightly better outcome over Fgwiththe MAPE of 45.74, an accuracy of 37.59and MSE of 0.77. Afterward, the 

ARIMA model shows moderate results with a MAPE of 50.60, an accuracy of 18.57and an MSE of 0.49. Next to 

that, the SVR model shows moderate results with the MAPE of 28.95, an accuracy of 44.43and MSE of 0.46. The 

NNET model attains the MAPE of 32.19, an accuracy of 41.60and the MSE of 0.41. Simultaneously, L_f, L_b, 

and RPART models show somewhat manageable and near-identical results. The L_f model attains the MAPE of 

33.72, the accuracy of 35.81and the MSE of 0.43. The L_b model attains the MAPE of 34.19, the accuracy of 

35.07and the MSE of 0.40. The RPART model attains the MAPE of 38.69, an accuracy of 37.00and the MSE of 

0.42. At the same time, the KNN and proposed ARIMA-NN model offers superior and competitive results 

compared to other methods. The ARIMA-NN model attains the MAPE of 28.12, an accuracy of 45.34and the 

MSE of 0.39. 

Figs. 5-7 shows the comparison of the results attained by diverse methods in terms of MAPE, accuracy, 

and MSE. The figures ensured the ARIMA-NN model shows superior outcomes over the compared methods in a 

significant way. 

 

Figure 5: MAPE analysis of different methods 
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Figure 6: Accuracy analysis of different methods 

 

Figure 7: MSE analysis of different methods 

4. Conclusion 

This paper has developed an integration of the ARIMA model with the NN model for Electricity 

Consumption Forecasting using Smart Meter Data. As the time series data often does not hold linear as well as 

nonlinear patterns, ARIMA or NN models are not enough to model and predict the time series data. The ARIMA-
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NN model is trained using the past data and creates a model for the validation process. Once the model is created, 

it can be used for the prediction of electricity consumption by the application of new building data. The proposed 

ARIMA-NN model is evaluated and the simulation outcome strongly pointed out its superior performance over 

the compared methods. The presented model has obtained effective testing performance with the MAPE of 25.53, 

an accuracy of 48.38, and the MSE of 0.21. As a part of the future scope, the proposed model can be deployed in 

real-time applications.   
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