Research Article

Nonsplit Neighbourhood Tree Domination Number In Connected Graphs

S. Muthammai¹, C. Chitiravalli²

¹Principal (Retired),

Alagappa Government Arts College, Karaikudi – 630003, Tamilnadu, India.

²Research scholar,

Government Arts College for Women (Autonomous), Pudukkottai – 622001, Tamilnadu, India.

¹Email: muthammai.sivakami@gmail.com, ²Email: chithu196@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: Let G = (V, E) be a connected graph. A subset D of V is called a dominating set of G if N[D] = V. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. A dominating set D of a graph G is called a tree dominating set (tr - set) if the induced subgraph $\langle D \rangle$ is a tree. The tree domination number $\gamma_{tr}(G)$ of G is the minimum cardinality of a tree dominating set. A tree dominating set D of a graph G is called a neighbourhood tree dominating set (ntr - set) if the induced subgraph $\langle N(D) \rangle$ is a tree. The neighbourhood tree domination number $\gamma_{ntr}(G)$ of G is the minimum cardinality of a neighbourhood tree dominating set D of a graph G is called a nonsplit tree dominating set (nstd - set) if the induced subgraph $\langle V - D \rangle$ is connected. The nonsplit tree domination number $\gamma_{nstd}(G)$ of G is the minimum cardinality of a nonsplit tree dominating set, if the induced subgraph $\langle V(G) - D \rangle$ is connected. The nonsplit neighbourhood tree domination number $\gamma_{nsntr}(G)$ of G is the minimum cardinality of a nonsplit neighbourhood tree domination number $\gamma_{nsntr}(G)$ of G is the minimum cardinality of a nonsplit neighbourhood tree dominating set of G. In this paper, bounds for $\gamma_{nsntr}(G)$ and its exact values for some particular classes of graphs and cartesian product of some standard graphs are found.

Keywords: Domination number, connected domination number, tree domination number, neighbourhood tree domination number, nonsplit domination number.

Mathematics Subject Classification: 05C69

1. INTRODUCTION

The graphs considered here are nontrivial, finite and undirected. The order and size of G are denoted by n and m respectively. If $D \subseteq V$, then $N(D) = \bigcup_{v \in D} N(v)$ and $N[D] = N(D) \cup D$ where N(v) is the set of vertices

of G which are adjacent to v. The concept of domination in graphs was introduced by Ore[13]. A subset D of V is called a dominating set of G if N[D] = V. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. Xuegang Chen, Liang Sun and Alice McRac [14] introduced the concept of tree domination in graphs. A dominating set D of G is called a tree dominating set, if the induced subgraph $\langle D \rangle$ is a tree. The minimum cardinality of a tree dominating set of G is called the tree domination number of G and is denoted by $\gamma_{tr}(G)$. Kulli and Janakiram [8, 9] introduced the concept of split and nonsplit domination in graphs.

A dominating set D of a graph G is called a nonsplit dominating set if the induced subgraph $\langle V-D\rangle$ is connected. The nonsplit domination number $\gamma_{nsd}(G)$ of G is the minimum cardinality of a nonsplit dominating set. Muthammai and Chitiravalli [11, 12] defined the concept of split and nonsplit tree domination in graphs. A tree dominating set D of a graph G is called a nonsplit tree dominating set if the induced subgraph $\langle V-D\rangle$ is connected. The nonsplit tree domination number $\gamma_{nstd}(G)$ of G is the minimum cardinality of a nonsplit tree idominating set.

V.R. Kulli introduced the concepts of split and nonsplit neighbourhood connected domination in graph. A neighbourhood dominating set D of a graph G is called a nonsplit neighbourhood dominating set if the induced subgraph $\langle V-D\rangle$ is connected. The nonsplit neighbourhood domination number $\gamma_{nsntd}(G)$ of G is the minimum cardinality of a nonsplit neighbourhood dominating set.

The Cartesian product of two graphs G_1 and G_2 is the graph, denoted by $G_1 \times G_2$ with $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ (where x denotes the Cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V(G_1 \times G_2)$ are adjacent in $G_1 \times G_2$ whenever $[u_1 = v_1 \text{ and } (u_2, v_2) \in E(G_2)]$ or $[u_2 = v_2 \text{ and } (u_1, v_1) \in E(G_1)]$.

In this paper, bounds for $\gamma_{nsntr}(G)$ and its exact values for some particular classes of graphs and cartesian product of some standard graphs are found.

2. PRIOR RESULTS

Theorem 2.1: [2] For any graph G, $\kappa(G) \leq \delta(G)$.

Theorem 2.2: [14] For any connected graph G with $n \ge 3$, $\gamma_{tr}(G) \le n - 2$.

Theorem 2.3: [14] For any connected graph G with $\gamma_{tr}(G) = n - 2$ iff $G \cong P_n$ (or) C_n .

Theorem 2.4: [11] For any connected graph G, $\gamma(G) \leq \gamma_{nstd}(G)$.

Theorem 2.5: [11] For any connected graph G with n vertices, $\gamma_{nstd}(G) = 1$ if and only if $G \cong H+K_1$, where H is a connected graph with (n-1) vertices.

Theorem 2.6: [11] For any graph G, $\gamma(G) \le \gamma_{ns}(G) \le \gamma_{nstd}(G)$.

Theorem 2.7: [11] For any cycle C_n on n vertices, $\gamma_{nstd}(C_n) = n - 2$, $n \ge 3$.

Theorem 2.8: [9] For any connected graph G, $\gamma_{ns}(G) \le p-1$. Further equality holds if and only if G is a star.

3. MAIN RESULTS

In this section, nonsplit neighbourhood tree domination number is defined and studied.

3.1. Nonsplit Neighbourhood Tree Domination Number in Connected Graphs Definition **3.1.1**:

A neighbourhood tree dominating set D of G is called a nonsplit neighbourhood tree dominating set, if the induced subgraph $\langle V(G) - D \rangle$ is connected. The nonsplit neighbourhood tree domination number $\gamma_{nsntr}(G)$ of G is the minimum cardinality of a nonsplit neighbourhood tree dominating set of G.

Not all connected graphs have a nonsplit neighbourhood tree dominating set. For example, the Path $P_n(n>5)$ has a neighbourhood tree dominating set, but no nonsplit neighbourhood tree dominating set.

If the nonsplit neighbourhood tree domination number does not exist for a given connected graph G, then $\gamma_{nsntr}(G)$ is defined to be zero.

Example 3.1.1:

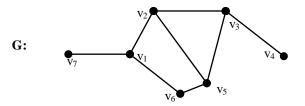


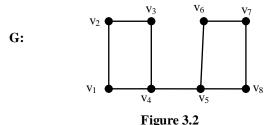
Figure 3.1

In the graph given in Figure 3.1, $D = \{v_4, v_5, v_7\}$ is a minimum nonsplit neighbourhood tree dominating set and the induced subgraph $\langle N(D) \rangle \cong P_4 = \langle \{v_3, v_2, v_6, v_1 \} \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected and $\gamma_{nsntr}(G) = 3$.

Remark 3.1.1:

Since $\langle V(G) - D \rangle$ is connected for any γ_{nsntr} - set D of a connected graph G, $|V(G) - D| \ge 1$.

Example 3.1.2



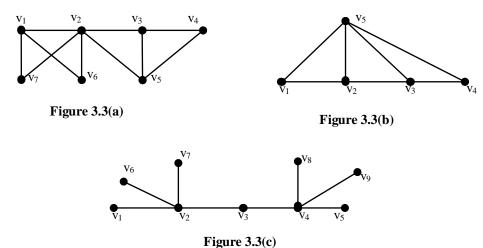
In the graph G given in Figure 3.2, $D = \{v_2, v_4, v_5, v_7\}$ is a minimum dominating set and the induced subgraph (N(D)) is a tree, but (V(G) - D) is disconnected.

Remark 3.1.2:

Every nonsplit neighbourhood tree dominating set is a dominating set and also a neighbourhood tree dominating set. Therefore, $\gamma(G) \leq \gamma_{nsntr}(G) \leq \gamma_{nsntr}(G)$. Therefore, for any nontrivial connected graph G, $\gamma_{nsntr}(G) = \min\{\gamma_{sntr}(G), \gamma_{nsntr}(G)\}$.

These are illustrated below.

Example 3.1.3:



In Figure 3.3(a), $D_1 = \{v_1, v_5\}$ is a minimum nonsplit neighbourhood tree dominating set. $V - D_1 = \{v_2, v_3, v_4, v_6, v_7\}$ and $\gamma(G) = \gamma_{nsntr}(G) = 2$.

In Figure 3.3(b), $D_2=\{v_1\}$ is a minimum nonsplit neighbourhood tree dominating set. $V-D_2=\{v_1,\,v_2,\,v_3,\,v_4\}$ and $\gamma(G)=\gamma_{nsntr}(G)=1$.

In Figure 3.3(c), $D_3=\{v_2,\ v_3,\ v_4\}$ is a minimum nonsplit neighbourhood tree dominating set. $V-D_3=\{v_1,\ v_5,\ v_6,\ v_7,\ v_8,\ v_9\}$ and $\gamma(G)=2,\ \gamma_{tr}(G)=3,\ \gamma_{ntr}(G)=3,\ \gamma_{nsntr}(G)=7$. Here, $\gamma(G)<\gamma_{ntr}(G),\ \gamma(G)<\gamma_{nsntr}(G)$.

Example 3.1.4:

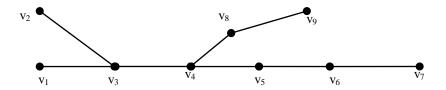


Figure 3.4

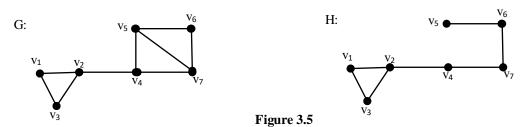
In Figure 3.4, $D_1 = \{v_3, v_4, v_7, v_9\}$ is a neighbourhood tree dominating set. $V - D_1 = \{v_1, v_2, v_5, v_6, v_8\}$, $D_2 = \{v_1, v_2, v_5, v_6, v_7, v_8, v_9\}$ is a nonsplit neighbourhood tree dominating set and $V - D_2 = \{v_3, v_4\}$, $\gamma(G) = 3$, $\gamma_{ntr}(G) = 4$, $\gamma_{nsntr}(G) = 4$, $\gamma_{nsntr}(G) = 7$. Therefore, $\gamma_{ntr}(G) = \min\{4, 7\} = 4$

Remark 3.1.3:

If H is a spanning subgraph of a connected graph G, then $\gamma_{nsntr}(G) \leq \gamma_{nsntr}(H)$.

This is illustrated by following examples.

Example 3.1.5:



In Figure 3.5, H is a spanning subgraph of G. $D_1 = \{v_3, v_5\}$ is a minimum nonsplit neighbourhood tree dominating set of G and $\gamma_{nsntr}(G) = 2$. The set $D_2 = \{v_3, v_5, v_6, v_7\}$ is a nonsplit neighbourhood tree dominating set of H and $\gamma_{nsntr}(H) = 4$.

Therefore, $\gamma_{nsntr}(G) < \gamma_{nsntr}(H)$.

Example 3.1.6:

Figure 3.6

In Figure 3.6., H is a spanning subgraph of G and $\{v_3, v_4\}$ is a minimum nonsplit neighbourhood tree dominating set of G, $\gamma_{nsntr}(G) = 2$. The set $\{v_1, v_4\}$ is a minimum nonsplit neighbourhood tree dominating set of H and $\gamma_{nsntr}(H) = 2$. Therefore, $\gamma_{nsntr}(G) = \gamma_{nsntr}(H)$.

In the following, the exact values of $\gamma_{sntr}(G)$ for some standard graphs are given.

- (a) For any path P_n on n vertices, $\gamma_{nsntr}(P_n) = n 2$, $n \ge 4$.
- (b) If G is a spider, then $\gamma_{nsntr}(G) = n + 1$.
- (c) If G is a wounded spider, then $\gamma_{nsntr}(G) = p + 1$, where p is the number of pendant vertices which are adjacent to nonwounded legs.
- (d) For any triangular cactus graph T_p whose blocks are p triangles with $p \ge 1$, $\gamma_{nsntr}(T_p) = p$ where p > 2 and p is odd.
- (e) If $S_{m,n}$, $(1 \le m \le n)$ is a double star, then $\gamma_{nsntr}(S_{m,n}) = m + n$.

Theorem 3.1.1:

If T is a tree which is not a star, then $\gamma_{nsntr}(T) \le n - 2$.

Proof:

Suppose T is not a star. Then T has two adjacent cut vertices u and v, such that deg u, deg $v \ge 2$. This implies that $D = \{V - \{u, v\}\}$ is a nonsplit neighbourhood tree dominating set of T. Therefore, $\gamma_{nsntr}(T) \le |D| = |V(T) - \{u, v\}| = n - 2$.

3.2. Nonsplit Neighbourhood Tree Domination Number of Cartesian product of Graphs

In this section, nonsplit neighbourhood tree domination numbers of $P_2 \times C_n$, $P_3 \times C_n$, $P_2 \times P_n$, $P_3 \times P_n$ are found.

Theorem 3.2.1:

For the graph
$$P_2 \times P_n$$
 $(n \ge 5, n \text{ is odd}), \gamma_{nsntr}(P_2 \times P_n) = \left\lceil \frac{n}{2} \right\rceil$.

Proof:

$$\text{Let } G \ \cong \ P_2 \ \times \ P_n \ \text{ and } \ \text{let } \ V\big(G\big) = \bigcup_{i=1}^n \{v_{i1},v_{i2}\} \quad \text{where } \ \langle \{v_{i1},\ v_{i2}\}\rangle \ \cong \ P_2^{\ i}, \ i \ = \ 1, \ 2 \ \text{ and } \ 1, \ 2 \ \text{ an$$

 $\langle \{v_{1j},\,v_{2j},\,...\,\,,\,v_{nj}\}\rangle \cong P_{n}{}^{j},\,j=1,\,2,\,...\,\,,\\ \text{n and }P_{2}{}^{i}\text{ is the }i^{th}\text{ copy of }P_{2}\text{ and }P_{n}{}^{j}\text{ is the }j^{th}\text{ copy of }P_{n}\text{ in }G.$

$$\text{Let } D = \bigcup_{i=1}^{\left\lfloor \frac{n-3}{4} \right\rfloor + 1} \{v_{4i-1,1}\} \ \cup \ \bigcup_{i=1}^{\left\lfloor \frac{n-1}{4} \right\rfloor + 1} \{v_{4i-3,2}\} \ . \ \text{Then } D \subseteq V(G). \ \text{Here, } v_{11} \ \text{and } v_{22} \ \text{are adjacent to } v_{12} \ \text{and } v_{n1}$$

and $v_{n-1,2}$ are adjacent to v_{n2} and $v_{2i+1,2}$ is adjacent to $v_{2i+1,1}$ $(i \ge 1)$.

Therefore, D is a dominating set of G and $\langle N(D) \rangle \cong P_{\frac{3n-1}{2}}$. Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is

connected, D is a nonsplit neighbourhood tree dominating set of G and is minimum.

Hence
$$\gamma_{nsntr}(G) = |D| = \left| \frac{n}{2} \right|$$
.

Remark 3.2.1:

 $\gamma_{nsntr}(P_2\times P_3)=2, \text{ the set } \{v_{31},\,v_{12}\} \text{ is a minimum nonsplit neighbourhood tree dominating set of } P_2\times P_n \text{ , where } v_{21},\,v_{22} \text{ are the vertices of degree 3 in } P_2\times P_3.$

Example 3.2.1:

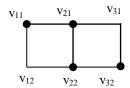


Figure 3.7

In the graph $P_2 \times P_3$ given in Figure 3.7, minimum nonsplit neighbourhood tree dominating set is D = $\{v_{11}, v_{32}\}$, where $\langle N(D)\rangle \cong P_4$ and $\gamma_{nsntr}(P_2 \times P_3) = 2$.

Theorem 3.2.2:

For the graph $P_3 \times P_n$ $(n \ge 3)$, $\gamma_{nsntr}(P_3 \times P_n) = n$.

Proof:

Let
$$G \cong P_3 \times P_n$$
 and let $V(G) = \bigcup_{i=1}^n \{v_{i1}, v_{i2}, v_{i3}\}$ where $\langle \{v_{i1}, v_{i2}, v_{i3}\} \rangle \cong P_3^i$, $i = 1, 2, 3$ and

$$\begin{array}{ll} \text{Let } G \cong P_3 \times P_n \text{ and let } V \Big(G \Big) = \bigcup_{i=1}^n \{ v_{i1}, v_{i2}, v_{i3} \} \text{ where } \langle \{ v_{i1}, \ v_{i2}, \ v_{i3} \} \rangle \cong P_3^i, \ i = 1, \ 2, \ 3 \ \text{and} \\ \langle \{ v_{1j}, \ v_{2j}, \ \dots, \ v_{nj} \} \rangle \cong P_n^j, \ j = 1, \ 2, \ \dots, \ n \ \text{and} \ P_3^i \ \text{is the } i^{th} \ \text{copy of } P_3 \ \text{and} \ P_n^j \ \text{is the } j^{th} \ \text{copy of } P_n \ \text{in } G. \\ & \left[\frac{n-1}{2} \right] \\ \text{Let } D = \bigcup_{i=1}^{\left[\frac{n-2}{2} \right]+1} \{ v_{2i,3} \} \ \cup \ \bigcup_{i=1}^{\left[\frac{n-2}{2} \right]+1} \{ v_{2i-1,1} \} \ . \ \text{Then } D \subseteq V(G). \ \text{Here, } v_{2i,2} \ \text{is adjacent to} \ v_{2i,3} \ (i \geq 1) \ \text{and} \ v_{2i-1,2} \ \text{is} \\ \end{array}$$

adjacent to $v_{2i-1,1}$ ($i \ge 1$). Therefore, D is a dominating set of G and $N(D) \ge P_n \circ P_1$. Since $\langle N(D) \rangle$ is a tree and $\langle V - D \rangle$ is connected, D is a nonsplit neighbourhood tree dominating set of G and is minimum.

Hence
$$\gamma_{nsntr}(G) = |D| = n$$
.

Example 3.2.2:

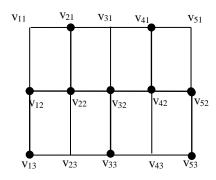


Figure 3.8

In the graph $P_3 \times P_5$ given in Figure 3.8, minimum nonsplit neighbourhood tree dominating set is D = $\{v_{12}, v_{22}, v_{32}, v_{42}, v_{52}\}\$, where $\langle N(D)\rangle \cong P_5 \circ P_1$, and $\gamma_{nsntr}(P_3 \times P_5) = 5$.

Theorem 3.2.3:

For the graph $P_2 \times C_n$ (n = 3), $\gamma_{nsntr}(P_2 \times C_n) = 2$.

Proof:

$$\text{Let } G \ \cong \ P_2 \ \times \ C_n \ \text{ and } \ \text{let } V \big(G \big) = \bigcup_{i=1}^n \{ v_{i1}, v_{i2} \}, \ \text{ where } \ \langle \{ v_{i1}, \ v_{i2} \} \rangle \ \cong \ P_2{}^i, \ i \ = \ 1, \ 2 \ \text{ and } \ V \big(G \big) = \bigcup_{i=1}^n \{ v_{i1}, v_{i2} \}, \ v_{i2} \}$$

 $\langle \{v_{1j}, v_{2j}, \dots, v_{nj}\} \rangle \cong C_n^j, j = 1, 2, \dots, n \text{ and } P_2^i \text{ is the } i^{th} \text{ copy of } P_2 \text{ and } C_n^j \text{ is the } j^{th} \text{ copy of } C_n \text{ in } G.$

Let $D = \{v_{31}, v_{2,2}\}$. Then $D \subseteq V(G)$. Here, v_{11}, v_{21} are adjacent to v_{31} and v_{12}, v_{32} are adjacent to $v_{2,2}$. Therefore, D is a dominating set of G and $\langle N(D) \rangle \cong P_4$. Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected, D is a nonsplit neighbourhood tree dominating set of G and $\gamma_{ntr}(G) \le |D| = 2$.

Let D' be a nonsplit neighbourhood tree dominating set of $P_2 \times C_n$. Since $\gamma(P_3 \times C_3) = \left| \frac{3n}{2} \right| = 2$ and $\gamma_{ntr}(G) \ge \gamma(G)$ and $\gamma_{nsntr}(G) \ge \gamma_{ntr}(G)$. Therefore, $\gamma_{nsntr}(G) = 2$.

Example 3.2.3:

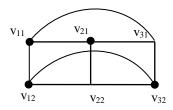


Figure 3.9

In the graph $P_2 \times C_3$ given in Figure 3.9, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{31}, v_{22}\}$, where $\langle N(D) \rangle \cong P_4$ and $\gamma_{ntr}(P_2 \times C_3) = 2$.

Remark 3.2.2:

For $n \ge 4$, $\gamma_{nsntr}(P_2 \times C_n) = 0$, since there exists no nonsplit neighbourhood tree dominating set of $P_2 \times C_n$. Let D be a dominating set of $P_2 \times C_n$. If D contains two vertices, then either $\langle N(D) \rangle$ is not a tree or $\langle N(D) \rangle$ contains a cycle. If D contains atleast three vertices, then $\langle N(D) \rangle$ contains a cycle.

Theorem 3.2.4:

For the graph $P_3 \times C_n$ (n = 3), $\gamma_{nsntr}(P_3 \times C_n) = 3$.

Proof:

$$\text{Let } G \cong P_3 \times C_n, \, n \geq 4 \text{ and let } V \Big(G \Big) = \bigcup_{i=1}^n \big\{ v_{i1}^{}, v_{i2}^{}, v_{i3}^{} \big\} \text{ such that } \langle \{v_{i1}^{}, v_{i2}^{}, v_{i3}^{} \} \rangle \cong P_3^i, \quad i = 1, 2, 3$$

and $\langle \{v_{1j}, v_{2j}, \dots, v_{nj}\} \rangle \cong C_n^j, j = 1, 2, \dots$, n where P_3^i is the i^{th} copy of P_3 and C_n^j is the j^{th} copy of C_n in G.

Let $D = \{v_{31}, v_{12}, v_{33}\}$. Then $D \subseteq V(G)$. Here, v_{22} is adjacent to v_{12} and v_{11}, v_{21}, v_{32} are adjacent to v_{31} and v_{32}, v_{13}, v_{23} are adjacent to v_{33} . Therefore, D is a dominating set of G and $\langle N(D) \rangle$ is a connected graph obtained from P_5 by attaching a pendant edge at v_{22} . Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected, D is a nonsplit neighbourhood tree dominating set of G and $\gamma_{nsntr}(G) \leq |D| = 3$.

Let D' be a nonsplit neighbourhood tree dominating set of $P_3 \times C_n$. Since $\gamma(P_3 \times C_3) = \left\lceil \frac{3n}{4} \right\rceil = 3$ and

 $\gamma_{ntr}(G) \ge \gamma(G)$ and $\gamma_{nsntr}(G) \ge \gamma_{ntr}(G)$. Therefore, $\gamma_{ntr}(G) = 3$.

Example 3.2.4:

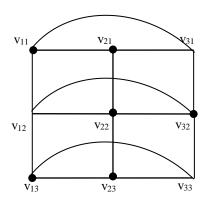


Figure 3.10

In the graph $P_3 \times C_3$ given in Figure 3.10, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{21}, v_{32}, v_{13}\}$, where $N(D) \cong P_6$ and $\gamma_{nsntr}(P_3 \times C_3) = 3$.

Remark 3.2.3:

For $n \ge 4$, $\gamma_{std}(P_3 \times C_n) = 0$, since there exists no nonsplit neighbourhood tree dominating set of $P_3 \times C_n$. If a dominating set D of $P_3 \times C_n$ contains at least three vertices, then the induced subgraph $\langle N(D) \rangle$ contains a cycle.

Theorem 3.2.5:

For the graph $P_4 \times C_n$ (n = 3), $\gamma_{nsntr}(P_4 \times C_n) = 4$.

Proof:

$$\text{Let } G \cong P_4 \times C_n, \, n \geq 6 \text{ and let } V \Big(G \Big) = \bigcup_{i=1}^n \big\{ v_{i1}, v_{i2}, v_{i3}, v_{i4} \big\} \text{ such that } \big\langle \{ v_{i1}, \, v_{i2}, \, v_{i3}, \, v_{i4} \} \big\rangle \cong P_4^{\, i}, \, i = 1,$$

2, 3, 4 and $\langle \{v_{1j}, v_{2j}, \dots, v_{nj}\} \rangle \cong C_n^{j}, j = 1, 2, \dots, n$, where P_4^i is the i^{th} copy of P_4 and C_n^j is the j^{th} copy of C_n in G. Let $D = \{v_{31}, v_{22}, v_{13}, v_{34}\}$. Then $D \subseteq V(G)$. Here, v_{11}, v_{21}, v_{32} are adjacent to v_{31} and v_{12}, v_{23}, v_{33} are adjacent to v_{13} and and v_{14}, v_{24} are adjacent to v_{34} . Therefore, D is a dominating set of G and $\langle N(D) \rangle \cong P_8$. Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected, D is a neighbourhood tree dominating set of G and $v_{11}, v_{22}, v_{23}, v_{23}, v_{23}, v_{23}, v_{24}, v_{24}, v_{24}, v_{25}, v_{25$

Let D' be a nonsplit neighbourhood tree dominating set of $P_3 \times C_n$.

Since
$$\gamma(P_4 \times C_3) = \left| \begin{array}{c} 3n \\ 4 \end{array} \right| + 1 = 4 \text{ and } \gamma_{ntr}(G) \ge \gamma(G) \text{ and } \gamma_{nsntr}(G) \ge \gamma_{ntr}(G). \text{ Therefore, } \gamma_{ntr}(G) = 4.$$

Example 3.2.5:

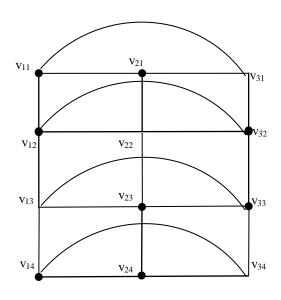


Figure 3.11

In the graph $P_4 \times C_3$ given in Figure 3.11, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{31}, v_{22}, v_{13}, v_{34}\}$, where $\langle N(D) \rangle \cong P_8$, and $\gamma_{nsntr}(P_4 \times C_3) = 4$.

Remark 3.2.4:

For $n \ge 4$, $\gamma_{nsntr}(P_4 \times C_n) = 0$, since there exists no neighbourhood tree dominating set of $P_4 \times C_n$. The graph $P_4 \times C_4$ can be divided into two blocks $P_2 \times C_4$ and $P_2 \times C_4$. $\gamma_{ntr}(P_2 \times C_4) = 0$. If a dominating set D of $P_4 \times C_n$ contains three vertices, then $\langle N(D) \rangle$ contains a cycle.

Remark 3.2.5:

For $n \ge 2$, $\gamma_{nsntr}(P_n \times C_3) = n$.

REFERENCE

- 1. S. Arumugam and C. Sivagnanam, Neighborhood connected domination in graphs, JCMCC 73(2010), pp.55-64.
- S. Arumugam and C. Sivagnanam, Neighborhood total domination in graphs, OPUSCULA MATHEMATICA, Vol. 31.No. 4, 2011.
- 3. M. El- Zahav and C.M. Pareek, Domination number of products of graphs, Ars Combin., 31 (1991), 223-227.
- 4. F. Harary, Graph Theory, Addison- Wesley, Reading Mass, 1972.
- 5. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, **1998**.
- 6. M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin., 18 (1983), 33-44.

- 7. M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs II, J. Graph Theory, 10 (1986), 97-106.
- 8. V.R. Kulli, B. Janakiram, The split domination number of a graph, graph theory notes of New York Academy of Science (1997) XXXII, 16-19.
- 9. V.R. Kulli, B. Janakiram, The nonsplit domination number of a graph, Indian j. Pure Appl. Math., 31 (2004), no. 4, 545-550.
- 10. S. Muthammai and C. Chitiravalli, Neighborhood Tree Domination in Graphs, Aryabhatta Journal of Math ematics and informatics, 8(2), (2016), 94 99, ISSN 2394 9309, (SCOUPUS INDEX ID: 73608143192), Impact factor: 4.866.
- 11. S. Muthammai and C. Chitiravalli, The Nonsplit Tree Domination Number of a Graph, J. of Emerging Technologies and Innovative Research (JETIR), Vol. 6, Issue 1, January 2019, pp. 1-9.
- 12. S. Muthammai, C. Chitiravalli, The split tree domination number of a graph, International Journal of Pure and Applied Mathematics, volume 117 no. 12, (2017), 351-357.
- 13. O. Ore, Theory of grap99hs, Amer. Math. Soc. Colloq. Publication, 38, 1962.
- 14. Xuegang Chen, Liang Sun, Alice McRae, Tree Domination Graphs, ARS COMBBINATORIA 73(2004), pp, 193-203.