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Abstract: This paper examines the stability issue of continuous Neural Networks with a time varying delay. A Lyapunov 

Krasovskii functional consisting of some simple augmented terms and delay dependent terms is constructed. While 

calculating the derivative of Lyapunov functional, various integral inequalities such as Auxiliary Function Based Integral 

Inequality, Wirtinger-based integral inequality and an extended Jensen double integral inequality are jointly adopted and 

hence in terms of linear matrix inequality a new delay dependent stability criterion is obtained. Two numerical examples are 

taken to show that the derived result is less conservative than some existing ones. 
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1. Introduction 

             Neural networks have numerous applications in the field of associative memory, signal processing, 

pattern recognition, optimization problem and other engineering and scientific arena [1, 2]. Time delays are 

inevitable in practical applications of neural networks. It leads to the instability and oscillation in the neural 

networks. Nowadays the stability analysis of neural networks with time-varying delays is one of the important 

research areas. Generally stability criteria on delayed neural networks are of two types namely delay dependent 

and delay independent. The delay-dependent stability criteria include the information of time delay. Hence the 

conservative of these criteria is less than the other one. So researchers mainly focus on deriving delay dependent 

stability criteria. 

The foremost objective in stability analysis of neural networks is to obtain less conservatism and larger 

admissible upper bounds of delays. It can be achieved by constructing suitable LKFs and selecting the 

appropriate bounding techniques. Some of the important methods used in the construction of generalized 

Lyapunov functional are delay-partitioning LKF [3], augmented LKF, the matrix-refined-function based LKF 

[4], multiple integral LKF [5] and other novel LKFs like [6] and so on. The bounding techniques used to estimate 

the integral terms in the derivatives of LKFs includes Jensen’s inequality [7], Wirtinger-based inequality [8], 

auxiliary function based inequality [9], free-matrix-based integral inequality [10], etc. 

Feasibility can be improved by means of the terms of the LKF construction and the estimating approach 

for the derivative of the LKF. Hence, in this paper, a Lyapunov Krasovskii functional consisting of some simple 

augmented terms and delay dependent terms is constructed. While calculating the upper bound of the Lyapunov 

functional derivative, the relationship between time varying delay and its lower and upper bounds are considered. 

Various bounding techniques to get a tighter upper bound such as Auxillary Function Based Integral Inequality, 

the Wirtinger-based integral inequality and an extended Jensen double integral inequality are utilized and more 

information of the activation function is taken into account. Based on Lyapunov stability theory, a novel delay-

dependent stability criterion is derived which has less conservatism. The effectiveness of the derived criteria is 

exhibited through numerical examples.  

Notations: 

In this paper Rn and Rm×n are the n-dimensional Euclidean space and the set of all m × n real matrix respectively. 

P > 0 denotes that P is a real symmetric positive definite matrix. ∗ indicates the symmetric terms in a symmetric 

matrix. diag{. . .} means block diagonal matrix and sym{X} = X + XT where superscript ‘T’ denotes the 

transpose of the matrix.  

2. Problem formulation 

Consider the following neural networks with interval time varying delays: 

   1 2( ) ( ) ( ( )) ( ( ( ))x t Ax t B f x t B f x t h t= − + + −                            (1) 

where  1 2( ) ( ), ( ),...., ( ),
T n

nx t x t x t x t R= 
 
is the state neuron vector, n denotes the number of neurons in a 

neural network.
 

( )1 2, ,....., 0nA diag   =   and 
1 2, n nB B R   are the  interconnection weight matrices. 
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The time delay h(t) is a continuous differentiable function satisfying 
1 2( ) ,h h t h   ( )h t  where 

1 2,   h h and 
 

are known constants.
 

The neuron activation function 

 1 2( ( )) ( ( )), ( ( )),...., ( ( ))
T n

nf x t f x t f x t f x t R=    is assumed to be continuous, bounded and satisfies the 

following condition. 

                                  1 2
1 2

1 2

( ) ( )
, , 1,2,...,i i

i i

f s f s
k k s s i n

s s

− +−
    =

−
                            (2)       

 k  and ki iwhere − +
 are constants.   

Lemma 1: (Auxiliary Function Based Integral Inequality [11]) Let x be a differentiable signal in  , na b R→  

for a positive definite matrix 
n nR R  , the following inequality holds: 

                                       1 1 2 2 3 3( ) ( ) ( ) 3 5

b

T T T T

a

b a x s Rx s ds R R R     −  + +  

where 1 2 3,   and    are defined as   

1 2 3 1 2

2 6 12
( ) ( );  ( ) ( ) ( ) ; ( ) ( )

( )

b b
b b

a a
a u

x b x a x b x a x s ds x s ds x s dsdu
b a b a b a

   = − = + − = + −
− − −   

 

 Lemma 2: (an extended Jensen’s double integral inequality [12]) For any constant symmetric positive definite 

matrix
n nR R  , real scalars , ,  a b  satisfying  a s b,s    , and a vector valued function 

( )  x t  : , na b R→ , such that the following integration are well defined, then the following inequality holds 

( )( 2 )
( ) ( ) [ ( ) ] [ ( ) ]

2

b b b

T T

a u a u a u

b a b a
x s Rx s dsdu x s dsdu R x s dsdu

  
− + −

 −        

Lemma 3: [14] 

For a given matrix R>0 and a differentiable function  , na b R→ , the following double integral inequality 

holds: 1 1 2 2 3 3( ) ( ) 2 4 6

b b

T T T T

a u

x s Rx s ds R R R      + +   

1

2 2

3 2 3

1
( ) ( )

2 6
( ) ( ) ( )

( )

3 24 60
( ) ( ) ( ) ( )

( ) ( )

b

a

b b b

a a u

b b b b b b

a a u a v u

x b x s ds
b a

x b x s ds x s dsdu
b a b a

x b x s ds x s dsdu x s dsdudv
b a b a b a







= −
−

= + −
− −

= − + −
− − −



  

     

  Lemma 4: [15] 

For any vectors
1 2 and   ,  a symmetric matrix R, any matrix S satisfying 0 

*

R S

R

 
 

 
  0 1and   ,  

the following inequality holds 
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1 1

1 1 2 2

2 2

1 1

*1

T

T T
R S

R R
R

 
   

  

    
+      

−     
  

Theorem 1 : 

 For given scalars h1, h2  and µ the system (1) is asymptotically stable if there exists positive diagonal matrices 

 H , ( 1,2,3,4)n n

i iU R i =
, 1 2, ,....., ( 1,2,...,6)n n

j j j njdiag R j     =  =   
positive definite 

matrix
4 4nx nP R  and the symmetric positive definite matrices 

2 2

1 2 3, , nx nQ Q Q R  

1 2 1 2, ,T ,T  nxnR R R and matrix 
3 3nx nS R   such that the following LMI hold simultaneously   

                                                             
1

1

0
*

R S

R


 
=  
 

                                         (3) 

                                                         1[ ( ) , ( )] 0h t h h t =                                          (4) 

                                                         2[ ( ) , ( )] 0h t h h t =                                          (5) 

where  

                                  1 2 3 4 5[ ( ), ( )]h t h t E E E E E = + + + +                                      (6) 

1 1 2 2 1

T TE P P   = +   

( ) ( )

( ) ( )

2 5 1 3 5 2 4 6 0

1 2 4 6 1 3 5 0

2

           2

T

T

p m

E e e

e K K e

     

     

 = + + − + + +   

  + + − + +  

  

           

   

3 1 5 1 1 5 2 6 2 1 2 6 3 7 3 2 3 7

4 8 1 4 8

( ) (1 ( )) ( )

       

T T T

T

E e e Q e e e e Q Q e e h t e e Q Q e e

e e Q e e

= + − + − −

−
  

2 2

4 1 0 1 0 12 0 2 0

T T TE h e R e h e R e = + − −   

2

5 0 1 2 0[ ] TE e T h T e= + −   

1 1 1 1{ ,3 ,5 }R diag R R R=   

1 1 1 9 1 10 2 11e h e h e h e  =     

2 0 1 2 2 3 3 4(1 ( )) (1 ( ))e e e e h t e h t e e  = − − − − −     

 3 3 4 3 4 11 3 4 11 132 6 12e e e e e e e e e = − + − − + −   

 4 2 3 2 3 10 2 3 10 142 6 12e e e e e e e e e = − + − − + −   

 3 4  =  

1 2 1 1 2 1 2 9 1 1 2 9 1 2 9 12 1 1 2 9 12( ) ( ) 3( 2 ) ( 2 ) 5( 6 12 ) ( 6 12 )

                                                 

T T Te e R e e e e e R e e e e e e e R e e e e = − − + + − + − + − + − − + −
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1 9 1 1 9 1 9 12 1 1 9 12

1 9 12 15 1 1 9 12 15 12 1 2 11

4

1 10 2 12 1 2 11 1 10 4 4

1

3

1

2( ) ( ) 4( 2 6 ) ( 2 6 )

 6( 3 24 60 ) ( 3 24 60 ) (

) ( ) {( ) ( )}

{[( (

T T

T

T T

i m i i i p i

i

m i i

i

e e T e e e e e T e e e

e e e e T e e e e h e h e

h e T h e h e h e sym e K e H e K e

sym K e e

+ +

=

+

=

 = − − + + − + − +

− + − − + − + − −

− − + − − +

−



 1 4 5 4 5 1

1 3 5 7 4 5 7 1 3

) ( )] [( ) ( )]}

{[ ( ) ( )] [( ) ( )]}

                                                

T

i i i i i p i i

T

m p

e e U e e K e e

sym K e e e e U e e K e e

+ + + + +− − − − − +

− − − − − −

  

0 1 5 1 7 2

T T Te e A e B e B= − + +   

( 1)  (15 )  [0  0 ], 1,2,3,....,15i n i n n n i ne I i −  −= =   

1 2 1 2{ , ,....., }; { , ,....., }m n p nK diag k k k K diag k k k− − − + + += =  

where 

2 2

2 1
12 2 1 2 2 1 1

( )
; ( ); ( ) ;

2

h h
h h h h h h t h h t h h

−
= − = − = − =   

 Proof: 

 Consider the following Lyapunov Krasovskii Functional 

   
1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )V t V t V t V t V t V t= + + + +   

where 
1( ) ( ) ( )TV t t P t =

 

1 1

( ) ( )

2 1 2

1 0 0

( ) ( )

3 4

1 0 0

5 6

( ) 2   ( ( ) )      ( ( ))

           +2 ( ( ) ) ( ( ))

           +2 ( ( ) ) (

i i

i i

x t x tn

i i i i i i

i

x t h x t hn

i i i i i i

i

i i i i i

V t f s k s ds k s f s ds

f s k s ds k s f s ds

f s k s ds k s

 

 

 

− +

=

− −

− +

=

− +

  
= − + − 

  

  
− + − 

  

− +

  

  

2 2( ) ( )

1 0 0

( ))
i ix t h x t hn

i

i

f s ds

− −

=

  
− 

  
  

  

1

1 2

( )

3 1 2 3

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

t h t h tt

T T T

t h t h t t h

V t s Q s ds s Q s ds s Q s ds     

− −

− − −

= + +     

1

1 2

4 1 1 12 2( ) ( ) ( ) ( ) ( )

t ht t t

T T

t h u t h u

V t h x s R x s dsdu h x s R x s dsdu

−

− −

= +      

1

1 2

5 1 2( ) ( ) ( ) ( ) ( )

t ht t t t t

T T

t h v u t h v u

V t x s T x s dsdudv h x s T x s dsdudv

−

− −

= +       

with

1

1 2

( )

( )

 ( ) [ ( ), ( ) , ( ) , ( ) ];

t h t h tt

t h t h t t h

t col x t x s ds x s ds x s ds

− −

− − −

=     
 ( ) ( ), ( ( ))t col x t f x t =  

Calculating the time derivative of V(t) along the given system yields 
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   1 1( ) 2 ( ) ( ) ( ) ( )T TV t t t t E t   = =                                                                                       (7) 

  

( ) ( )

( ) ( )

2 1 3 5 2 4 6

2 4 6 1 3 5

( ) 2 ( ( )) ( )

           2 ( ) ( )

T

T

p m

V t f x t x t

x t K K x t

     

     

 = + + − + + +   

  + + − + +  
  

          
2( ) ( )T t E t =                                                                                                                     (8)       

3 1 1 2 1 1 3 2

2 3 2

( ) ( ) ( ) ( )( ) ( ) (1 ( )) ( ( ))( ) ( ( ))

           ( ) ( ) 

T T T

T

V t t Q t t h Q Q t h h t t h t Q Q t h t

t h Q t h

     

 

= + − − − + − − − − −

− −
               

          3( ) ( )T t E t =                                                                                                                      (9) 

1

1 2

2 2

4 1 1 1 1 12 2 12 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t ht

T T T T

t h t h

V t h x t R x t h x s R x s ds h x t R x t h x s R x s ds

−

− −

= − + − 
                (10) 

Applying Lemma (1) and Lemma (4) we get 

1

1 1 1 2 1 1 2 1 2 9 1 1 2 9

1 2 9 12 1 1 2 9 12

( ) ( ) ( ){( ) ( ) 3( 2 ) ( 2 )

                                   5( 6 12 ) ( 6 12 ) } ( )

t

T T T T

t h

T

h x s R x s ds t e e R e e e e e R e e e

e e e e R e e e e t





−

−  − − − + − − − − +

− + − − + −


         (11) 

1 1

2 2

( )

12 2 12 2 12 2

( )

( ) ( ) ( ) ( ) ( ) ( )

                                 

t h t ht h t

T T T

t h t h t h t

h x s R x s ds h x s R x s ds h x s R x s ds

− −−

− − −

− − −    

12
3 4 1 3 4 3 4 11 1 3 4 11

2

3 4 11 13 1 1 2 11 13

12
2 3 1 2 3 2 3 10 1 2 3 10

1

2 3 10 14 1 2

( ){( ) ( ) 3( 2 ) ( 2 )
( )

 5( 6 12 ) ( 6 12 ) } ( )

( ){( ) ( ) 3( 2 ) ( 2 )
( )

5( 6 12 ) (

T T T

T

T T T

h
t e e R e e e e e R e e e

h h t

e e e e R e e e e t

h
t e e R e e e e e R e e e

h t h

e e e e R e







 − − − + + − + − +
−

− + − − + −

− − − + + − + − +
−

− + − − 3 10 146 12 ) } ( )Te e e t+ −

  

( ){ } ( )T Tt t   −                                                                        (12)     

1

1 2

2

5 1 2 1 2( ) ( )[ ] ( ) ( ) ( ) ( ) ( )

t ht t t

T T T

t h u t h u

V t x t T h T x t x s T x s dsdu h x s T x s dsdu 

−

− −

= + − −      

By Lemma (3), 

 

1

1 1 9 1 1 9 1 9 12 1 1 9 12

1 9 12 15 1 1 9 12 15

( ) ( ) ( ){2( ) ( ) 4( 2 6 ) ( 6 )

                                     6( 3 24 60 ) ( 3 24 60 ) } ( )

t t

T T T T

t h u

T

x s T x s dsdu t e e T e e e e e T e e e

e e e e T e e e e t





−

 − − − + + − + − +

− + − − + −

 

 (13) 

Using Lemma (2), 
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1

2

2 12 1 2 11 1 10 2 12 1 2 11 1 10( ) ( ) ( ){( ) ( ) } ( )

t h t

T T T

t h u

h x s T x s dsdu t h e h e h e T h e h e h e t  

−

−

−  − − − − −              (14)

           

 

By the assumption of activation function (2) we have 

              ( ) : 2 ( ) ( ( )) ( ( )) ( ) 0
T

i m i pa s K x s f x s H f x s K x s − −                         

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2( , ) : 2 ( ) ( ) ( ( ) ( ( ) ( ( ) ( ( ) ( ) ( ) 0
T

i m i pb s s K x s x s f x s f x s U f x s f x s K x s x s − − − − − −     
                                                                                                                                                    

 where    1 2 1 2, ,....., 0, , ,....., 0, 1,2,3,4.i i i ni i i i niH diag a a a U diag b b n i=  =  =
 

Then the following inequalities hold 

                   
1 2 1 3 4 2( ) ( ) ( ( )) ( ) 0a t a t h a t h t a t h+ − + − + −                                                                    (15)                                  

                      
1 1 2 1 3 2 4( , ) ( , ( )) ( ( ), ) ( , ( )) 0 b t t h b t h t h t b t h t t h b t t h t− + − − + − − + −                        (16)     

 

Combining the equations (7)-(16) we get 

 ( ) ( ) ( ( ), ( )) ( )TV t t h t h t t     

where ( ( ), ( ))h t h t  is defined in (6) and  

1

1 2 1

1 2 1

( )

2 2

1 11 2( )

( ) [ ( ), ( ), ( ( )), ( ), ( ( )), ( ( )), ( ( ( ))),

1 1 1 1
            ( ( )), ( ) , ( ) , ( ) , ( ) ,

1
            

T T T T T T T

t h t h tt t t

T T T T T

t h t h t t h t h u

t x t x t h x t h t x t h f x t f x t h f x t h t

f x t h x s ds x s ds x s ds x s dsdu
h hh h


− −

− − − −

= − − − − −

−     

1 1

2 1

( ) ( )

32 2

12 1 ( )

1 1
( ) , ( ) , ( ) ]

                   

t h t ht h t t h t t t t

T T T T

t h u t h t u t h v u

x s dsdu x s dsdu x s dsdudv
hh h

− −− −

− − −

      

 

Therefore, if LMIs (3)-(5) hold, then the following holds for a sufficiently small scalar 0    

2
( ) ( )V t x t −  

which shows the asymptotic stability of the given system (1). This completes the proof.  

3. Numerical Examples 

Two numerical examples are considered for the analysis of our criteria and some existing works. 

Example 1 

Consider the system  
1 2( ) ( ) ( ( )) ( ( ( )) wherex t Ax t B f x t B f x t h t= − + + −         

1 2

1 0 1 0.5 2 0.5
,          ,        

0 1 0.5 1.5 0.5 2
A B B

− −     
= = =     

− −     
 

{0,0}    K {0.4,0.8}m pK diag diag= =  . 

In order to verify the advantages of the proposed method the maximum delay bounds for of the given system 

with various h1 and  are listed in Table1. 
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Example 2 

Consider the system  
1 2( ) ( ) ( ( )) ( ( ( )) wherex t Ax t B f x t B f x t h t= − + + −  

1 2

2 0 1 1 0.88 1
,          ,        

0 2 1 1 1 1
A B B

     
= = =     

− −     
 {0,0}    K {0.4,0.8}m pK diag diag= =

 

Table 2 depicts that the results obtained by our method are less conservative than those of [20], [21] and [22]. 

Table 1. Upper bounds (h2) for various h1 and µ 

h1 Method μ = 0.8 μ = 0.9 Unknown μ  

0.5 [15] 0.8262 0.8215 0.8183 

[16] 1.1217 0.9984 0.9037 

[17] 1.4508 1.4042 1.0862 

Theorem 1 1.9609 1.6979 1.6755 

0.75  [15] 0.9669 0.9625 0.9592 

[16] 1.2213 1.1021 1.0102 

[18] 1.3990 1.2241 1.0972 

[17] 1.4891 1.4789 1.1838 

Theorem 1 2.1060 1.9107 1.9019 

1 [15] 1.1152 1.1108 1.1075 

[16] 1.3432 1.2238 1.1318 

[18] 1.4692 1.2948 1.1774 

 [17] 1.6892 1.6880 1.4000 

Theorem 1  2.2709 2.1126 2.1111 

 

 

Table 2. Upper bounds (h2) for various h1 and µ 

h1 Method μ = 0.8 μ = 0.9 Unknown μ  

0 [19] 1.2281 0.8639 0.8298 

[20] 1.6831 1.1493 1.0880 

[21] 2.3534 1.6050 1.5103 

Theorem 1 5.2089 2.2314 1.8360 

1 [20] 2.5967 2.0443 1.9621 

[21] 3.2575 2.4769 2.3606 

Theorem 1 6.1369 2.8869 2.7602 

 

100 

[20] 101.5946 101.0443 100.9621 

[21] 102.2552 101.4769 101.3606 

Theorem 1 103.6081 101.8528 101.7460 

 

 

Conclusion 

This paper studies the stability issue of continuous Neural Networks with a time varying delay. A novel 

Lyapunov Krasovskii functional consisting of some simple augmented terms and delay dependent terms is 

constructed. By employing of various bounding techniques to get larger admissible bounds a new less 

conservative stability criterion is developed in terms of linear matrix inequality. Finally two numerical examples 

are discussed to substantiate the efficacy of the proposed theorem.  
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