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Abstract: This paper examines the stability issue of continuous Neural Networks with a time varying delay. A Lyapunov
Krasovskii functional consisting of some simple augmented terms and delay dependent terms is constructed. While
calculating the derivative of Lyapunov functional, various integral inequalities such as Auxiliary Function Based Integral
Inequality, Wirtinger-based integral inequality and an extended Jensen double integral inequality are jointly adopted and
hence in terms of linear matrix inequality a new delay dependent stability criterion is obtained. Two numerical examples are
taken to show that the derived result is less conservative than some existing ones.
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1. Introduction

Neural networks have numerous applications in the field of associative memory, signal processing,
pattern recognition, optimization problem and other engineering and scientific arena [1, 2]. Time delays are
inevitable in practical applications of neural networks. It leads to the instability and oscillation in the neural
networks. Nowadays the stability analysis of neural networks with time-varying delays is one of the important
research areas. Generally stability criteria on delayed neural networks are of two types namely delay dependent
and delay independent. The delay-dependent stability criteria include the information of time delay. Hence the
conservative of these criteria is less than the other one. So researchers mainly focus on deriving delay dependent
stability criteria.

The foremost objective in stability analysis of neural networks is to obtain less conservatism and larger
admissible upper bounds of delays. It can be achieved by constructing suitable LKFs and selecting the
appropriate bounding techniques. Some of the important methods used in the construction of generalized
Lyapunov functional are delay-partitioning LKF [3], augmented LKF, the matrix-refined-function based LKF
[4], multiple integral LKF [5] and other novel LKFs like [6] and so on. The bounding techniques used to estimate
the integral terms in the derivatives of LKFs includes Jensen’s inequality [7], Wirtinger-based inequality [8],
auxiliary function based inequality [9], free-matrix-based integral inequality [10], etc.

Feasibility can be improved by means of the terms of the LKF construction and the estimating approach
for the derivative of the LKF. Hence, in this paper, a Lyapunov Krasovskii functional consisting of some simple
augmented terms and delay dependent terms is constructed. While calculating the upper bound of the Lyapunov
functional derivative, the relationship between time varying delay and its lower and upper bounds are considered.
Various bounding techniques to get a tighter upper bound such as Auxillary Function Based Integral Inequality,
the Wirtinger-based integral inequality and an extended Jensen double integral inequality are utilized and more
information of the activation function is taken into account. Based on Lyapunov stability theory, a novel delay-
dependent stability criterion is derived which has less conservatism. The effectiveness of the derived criteria is
exhibited through numerical examples.

Notations:

In this paper R" and R™" are the n-dimensional Euclidean space and the set of all m x n real matrix respectively.
P > 0 denotes that P is a real symmetric positive definite matrix. * indicates the symmetric terms in a symmetric
matrix. diag{. . .} means block diagonal matrix and sym{X} = X + XT where superscript ‘T’ denotes the
transpose of the matrix.

2. Problem formulation

Consider the following neural networks with interval time varying delays:
X(t) =—Ax(t) + B, f (x(1)) + B, f (x(t —h(t)) @

where X(t) = [Xl(t), X, (£),.ees X, ('[),]T € R" is the state neuron vector, n denotes the number of neurons in a

neural network. A=diag (e, a,,.....,a,)>0 and B, B, € R™" are the interconnection weight matrices.
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The time delay h(t) is a continuous differentiable function satisfying h <h(t)<h,, h(t) < zwhere

h,h, and u are known constants. The neuron activation function

f(x(t)) = [ f(x (1), (X, (1)),...., T (X, (t))]T € R" s assumed to be continuous, bounded and satisfies the
following condition.

ki’swski*ﬁsﬁssz,i:1,2,...,n @)
$$=S;

where k;” and k;" are constants.

Lemma 1: (Auxiliary Function Based Integral Inequality [11]) Let x be a differentiable signal in [a, b] —R"

for a positive definite matrix R € R™", the following inequality holds:

b
(b—a)[ X" (s)RK(s)ds = 7, Ry, +37, Ry, +57,' Ry,
where 7,7, and y, are defined as

= X(0)=X(@); 72 =X(0)+X(@) ~ [ X(S)dsi 7y =7, + [ X(5)ds —ﬁﬂx(s)dsdu

Lemma 2: (an extended Jensen’s double integral inequality [12]) For any constant symmetric positive definite
matrix R € R™™ | real scalars @,0,0 satisfying @<S<DS<6 and a vector valued function

X (t) : [a, b] —R" , such that the following integration are well defined, then the following inequality holds

(b—a)(b+a—20)
2

ﬁ X" (s)Rx(s)dsdu < —[TJQ X(s)dsdu]" R[Jb.j X(s)dsdu]

Lemma 3: [14]

For a given matrix R>0 and a differentiable function[a,b] — R", the following double integral inequality

b b
holds: [ X" (s)Rx(s)ds = 2" Ry, +4y7," Ry, + 6y, Ry

vy =X(0) [ )

2 b 6 b b
v, =x(0)+— j x(s)ds — ey j j x(s)dsdu

3 b 24 b b 60 bbb
=X(b) ——— | x(s)ds + ——— | | x(s)dsdu - ——— x(s)dsdudv
v, = x(b) b_a£ )+ g7 | X6 (b_a)sm (s)

Lemma 4: [15]

R S
For any vectors £, and f3,, a symmetric matrix R, any matrix S satisfying[* R} >0 and 0<a <1,

the following inequality holds
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1 1 . ATR sTA
Zﬂl Rﬂl"'gﬂz Rﬁ22|:ﬂ2:| |:* R:||:ﬂ2}

Theorem 1 :

For given scalars hi, ho and p the system (1) is asymptotically stable if there exists positive diagonal matrices

matrix P € R*™"  and  the symmetric  positive  definitt  matrices  Q,,Q,,Q, € R*™"
R, R,,T,,T, € R™and matrix S € R*™®" such that the following LMI hold simultaneously
R, S
3 A ?

ITh(t) = h,h(t)] <0 4)

ITh(t) = h,,h(t)] <0 (5)
where

I[h(t),h(t)]=E, +E, +E, +E, + E, (6)

E =xPx, +n,Px
E, =2 e [(A+A+A) (4 + A+ )8 |+
2 e[ Ky (Ao + 2+ A)— Ky (A + A+ 25) ey |
E=[e &]Qle &l +[e, &](Q-Q)e, e] +@-hM)[e, &](Q-Q)[e &
-le, &]Qfe &
E, =h’eRe,’ +h,'eR.e —ydy’ —A
E. =¢,[T,+h T,Je,/ —A
R, =diag{R;,3R,,5R }
m=e he he, hey ]
m,=[e e-e e-(1-ht)e, @-h(t)e,—e,]
my=[e,—e, e,+e,—2e, e —e, +6e,-12e;]
m,=[e,—e, e,+e,—2e, e,—e +6e,-12e,]

'//:[773 774]
A=(e,—&,)R (e, —&,)" +3(e +e&,~26,)R (e +e,~2¢,)" +5(¢, —e, + 66, ~12¢,,)R, (¢, —€, +6¢, ~12¢,,)’
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A=2(e, —€,)T,(e,—e,)" +4(e, +2e,—6e,)T, (e +2e, —6e,)" +
6(e, —3e, +24e,, —60e,.)T, (e, —3e, +24e,, —60e,.)" +(h,e, —he, —

ﬁ1e10)T2 (huel - ﬁzell - ﬁ1910)1- + i Sym{(ei Km - ei+4)T Hi (ei+4 -K pei )}"‘

Z sym{[(Km (ei - ei+l) - (ei+4 - ei+5)]T U i [(ei+4 - ei+5) -K P (ei - ei+1)]}+

Sym{[Km (el —6‘3) - (6‘5 _e7)]TU4[(es _e7) - Kp(el —83)]}

_ T T T
e, =—€¢A +eB, +eB,

e =[0

1, Oyson 11 =12,3,...,15

nx(i-1)n "n

K, = diag{k,", Kk, ...k, 3K, =diag{k,",K,",......k,'}

where h12 :hZ_hl;ﬁz :hz_h(t);ﬁl :h(t)_hl;h" :L;hf)

Proof:

Consider the following Lyapunov Krasovskii Functional

\Y (t) :Vl (t) +V2 (t) +V3 (t) +V4 (t) +V5 (t)

where V,(t) = 8 (t)PS(t)

n % (1) % (t)
v2<t>=2_z{ﬂn [ (fi(s)-ks)ds + 2, | (krs—fi<s»ds}

0

n % (t=hy) % (t=hy)
+2_Z{ﬂai [ (f(s)—ksyds+4, | (krs—fxs»ds}

n % (t=hy) % (t=hy)
+2Z{ﬂsi [ (fs)-ks)ds+2 | (krs—fi(s»ds}

0

t-h(t)

t t-h
Vi) = [ 77 ()Qm(s)ds+ [ 7' ()Qu(s)ds+ [ 7" (s)Qyr(s)ds
t-hy

t-h(t) t—h,

V,(t)=h, j ij (s)R.X(s)dsdu + hlztjhl j X" (s)R,%(s)dsdu
t-h u t-h, u

V, (t) = j ﬁ X" (S)T,x(s)dsdudv + hot_jhl H X" (S)T,X(s)dsdudv
t-h v u

t-h, vu

t t-h, t=h(t
with 5(t) = col[x(t), j x(s)ds, j x(s)ds, _[()x(s)ds]; n(t)=col [x(t), f(x(®)]

t—hy t-h(t) t-h,

Calculating the time derivative of V(t) along the given system yields
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Vi) =258 ()5(1) = &" (DEE(D) @)
Vo (1) = 2| TN [(A+ A + A5 )= (A + A + 45) [X(1) |+
2| X @) Ky (& + A+ 4 ) = Ky (A + 45+ 45) ] X(0) |
=& (DELW) ®

V(1) =" (©Qun(t) +7" (t—h)(Q, —Q)n(t—h) +A-h(®)n" (t—h(t))(Q, —Q,)n(t—h(t)) -
77T (t—h,)Qn(t—hy)

= &T(DELS(1) ©)
t-hy
V, (1) = WX R X() —h, I X' (S)RX(s)ds + X" (R X() —hy, [ X (S)R,x(s)ds
t—h, (10)

Applying Lemma (1) and Lemma (4) we get

(11

_h1 j. X' (5) R1X(S)d8 < _§T (t){(e1 _eZ)Ri(el _ez)T +3(el —& - 269)R1(el —€- Zeg)T +
t-hy

5(61 —€+ 669 _12e12)R1(91 -6+ 699 _12612)T}68(t)

t=h(t)

t—hy t-h,
~h, j X" ()R, %(s)ds <—h, j X" ()R, %(s)ds —h, j X" ()R, %(s)ds

t-h, t—h, t-h(t)

Ela(t) 5 ( ){(e e4)R1(e3 _e4)T +3(e3 +€, — Zell)Rl(e3 +e,— zell)T i

5( -6t 6911 —12813) R:L(e -6+ 6911 _12913)T}§(t)
h(t};lz hl § (t){(e _es)R1(e ea)T +3(ez +€— 2e10)R1(e2 +€— 2e10)T +
5( , —6 6e10 _12e14) R1(ez —6+ 6e10 _12914)T }f(t)

<-&" ({wdy ¥ M) (12)

t-h t
V, (t) = X (t)[T, +h, 2T, Jx(t) - j j X' ()T x(s)dsdu -, | [X7(s)T,x(s)dsdu

t—=h u t=h, u

By Lemma (3),

t ot
[ [X"(s)Tx(s)dsdu < —£" (t){2(e, —€,)T, (e, —€,)" +4(e, + 26, —6e,,)T, (&, +€, —6e,)" +
t-hu

6(e, — 3, + 24e,, —60e,. )T, (e, — 3, + 24e,, —60e,. ) }&(t) (13)

Using Lemma (2),
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t=h t

—h, [ [X ()T, x(s)dsdu < &7 (M8, — ey, — P )T, (e, —Moe, —he,) 3 (4)
t—h, u

By the assumption of activation function (2) we have

a,(s):2[Kx(s)— F(x(s))]' H, [ f(x(s))-K,x(s) |20
bi(s,,8,) 2] K,y (X(5) = X(5,)) ~ (F (x(5) — T (x(5,)) ] U, [ (F(x(s) — T (x(5,)) ~ K, (X(8,) = X(5,)) | >0

where H, =diag[a;,a,,....,a,]>0,U; =diag[b,,b,,....,n,;]>0,i =1,2,3 4.

Then the following inequalities hold
a(t)+a,(t—h)+a,(t—h(t))+a,(t—h,)=0 (15)
by (t,t—h)+b,t—h,t—h(t)+b,(t —h(t),t —h,) +b, t,t —h(t)) > 0 (16)
Combining the equations (7)-(16) we get
V() <&" O (h(), h(t)s(t)
where T'(h(t), h(t)) is defined in (6) and
S(M)=[x" (1), x" (t- hl) X" (t=h(),x" (t =h,), fT(x@), f " (x(t =), FT(x(t=h())),

t t—h t-h(t)

T (x(t—h,)),~ jx (s)ds, = | xT(s)ds,hi | xT(s)ds,%HxT(s)dsdu,

t—h, t-h(t) 2 t—h, h u
1 t—h(t) t=h(t) t-h t-h
= j X" (s)dsdu, = j j X" (s)dsdu, — = j j j X" (s)dsdudv]’
h2th2 u 1th(t)u thlvu

Therefore, if LMIs (3)-(5) hold, then the following holds for a sufficiently small scalar & > 0

; 2
V() <—¢|x)|
which shows the asymptotic stability of the given system (1). This completes the proof.

3. Numerical Examples

Two numerical examples are considered for the analysis of our criteria and some existing works.

Example 1

Consider the system X(t) = —AXx(t) + B, f (x(t)) + B, f (x(t —h(t)) where
10 -1 05 -2 05
A= , B, = , B, =
{O 1} {0.5 —1.5} {0.5 —2}
K, =diag{0,0} K, =diag{0.4,0.8} .

In order to verify the advantages of the proposed method the maximum delay bounds for of the given system
with various hiand £ are listed in Tablel.
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Example 2

Consider the system X(t) = —Ax(t) + B, f (x(t)) + B, f (x(t —h(t)) where

2 0
A= ,
o2

Table 2 depicts that the results obtained by our method are less conservative than those of [20], [21] and [22].

11 088 1 _ _
B, = 14 B, = L1 K, =diag{0,0} K, =diag{0.4,0.8}

Table 1. Upper bounds (h2) for various hiand p

hs Method u=0.8 u=0.9 Unknown
0.5 [15] 0.8262 0.8215 0.8183
[16] 1.1217 0.9984 0.9037
[17] 1.4508 1.4042 1.0862
Theorem 1 1.9609 1.6979 1.6755
0.75 [15] 0.9669 0.9625 0.9592
[16] 1.2213 1.1021 1.0102
[18] 1.3990 1.2241 1.0972
[17] 1.4891 1.4789 1.1838
Theorem 1 2.1060 1.9107 1.9019
1 [15] 1.1152 1.1108 1.1075
[16] 1.3432 1.2238 1.1318
[18] 1.4692 1.2948 1.1774
[17] 1.6892 1.6880 1.4000
Theorem 1 2.2709 2.1126 2.1111

Table 2. Upper bounds (hz) for various hi and p

hs Method nu=0.8 u=09 Unknown p

0 [19] 1.2281 0.8639 0.8298
[20] 1.6831 1.1493 1.0880
[21] 2.3534 1.6050 1.5103
Theorem 1 5.2089 2.2314 1.8360

1 [20] 2.5967 2.0443 1.9621
[21] 3.2575 2.4769 2.3606
Theorem 1 6.1369 2.8869 2.7602
[20] 101.5946 101.0443 100.9621

100 21] 102.2552 101.4769 101.3606
Theorem 1 103.6081 101.8528 101.7460

Conclusion

This paper studies the stability issue of continuous Neural Networks with a time varying delay. A novel
Lyapunov Krasovskii functional consisting of some simple augmented terms and delay dependent terms is
constructed. By employing of various bounding techniques to get larger admissible bounds a new less
conservative stability criterion is developed in terms of linear matrix inequality. Finally two numerical examples
are discussed to substantiate the efficacy of the proposed theorem.
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