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Abstract” In this current investigation, we apply Horadam polynomial to establish sharp upper bound for the
second and third coefficient of functions from new subclass of sakaguchi type bi-univalent functions defined in
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1 Introduction
Let U= {& :|&]| < 1} denote the open unit disk on the complex plane. The class of all holomorphic
functions of the form
u@ =¢ + a&* + az &+ €Y
defined in the open unit disk U with Montel normalization u(0) = 0 = u'(0) — 1 is denoted by A and the class
S c A is the class which consists of univalent functions in U.
The Koebe one quarter theorem [1], states that the image of U under every univalent function u € A contains a

disk of radius i Thus Koebe one quarter theorem guarantees that for every univalent function u € A, there exists

inverse function u™! = v satisfying
uH@3y=¢ €U and ufu'(}=¢  where [{|<m, 1K= %
A function u € A is said to be bi-univalent in U if both u and «~ are univalent in U. Let = denote the class of
all function u € A which are bi-univalent functions defined in the unit disk U and whose Taylor series expansion
is given by (1). A simple computation shows that its inverse v = u~1 also has the expansion.
v () =u({) ={ —a{*+ (2a5 — a3){® — (5a3 — 5aa3 + a,){* + - (2)
Many authors have established and examined subclasses of bi-univalent function and attained sharp bounds for
the initial coefficients. (see [2,3,4,5,6])
A holomorphic function u is subordinate to an holomorphic function G in U denoted as u < G, (¢ € U). If
u(é) = G(w(é)),|&é| <1 for some holomorphic schwarz function w(§) with w(0) =0 and |w(&)| < 1. It
follows from schwarz lemma that
ul@) < 6(¢) © u(0)=600) and u(U) c GU), ¢€U
One can refer [1,7] for details of subordination.
The Horadam Polynomial h, (o) are defined by the following repetition relation (see [9,10]):
h,(6) =x0 h,_, (6) +y h,_,(0), (0 ER, n € N—-{1,2})
with
hi(e) =x and hy(o) =yo 3
for some real constants a, b, x and y.
The generating function of the Horadam polynomials h,, (o) (see [9,10]) is given by

N8 = Y oyt = 22020

1 — x0¢é — y&2
2 Bi-Univalent Function Class #B, ,{Il(a,$)}
In this section, we introduce a new subclass of Sakaguchi type bi-univalent functions with the application
of Horadam polynomial by subordination technique and obtain bound for initial Taylor coefficient |a,| and |as]|
for the function.
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Definition 1.
Foro<p<10<pu<1and|t| <1, butt=+1,afunction u € X of the form (1) is said to be in the class
HB, .t {11(0, £)}, if the following subordination hold:

(1=0lpu & u"" (@) + @pu+p - W u" @) +{u' (D]
pu&2u(§) — t2u" (t)] + (p — wE[w' () — tw' ()] + (1 — p + ) [u(§) — u(td)]

<M, +1-a
()

and
A =)[pud® v + Cpu+p — w3 v"() +{v'()]
pud?[v" (@) = t2v" ()] + (p — w[v' () — tv' )]+ (1 = p + W[v () — v(t]

<N, )+1-a

(6)
where v is given by (2).
Specializing the parameterp =0, u =0, t =0and p =1, u =0, t = 0, we have the following respectively.
Definition 2.
A function u € X of the form (1) is said to be in the class SH By {Il(a, £)}, if the following subordination hold:

§u'd)
(0 <(g,é)+1—-a
and
¢v'()
@) <(0,{)+1—a
where v is given by (2).
Definition 3.
A function u € X of the form (1) is said to be in the class KXH Bx{I1(o, &)}, if the following subordination hold:
§u"(§)
1+ ) <M(0,é)+1—a
and
{v"(©)
1+T{) <H(a,()+1—a

where v is given by (2).

In the following theorem, we determine the bound for initial Taylor coefficient |a,| and |a5| for the function class
HB, . {ll(0, &)} Later we will reduce these bounds to other classes for special cases.

Theorem 1.

Let u given by (1) be in the class HB,, , {I1(g,¢)}. Then

|baly|bo|
la,| <
(3 —Ts)[b%0?]
j =0+ 1, it + 07071, + @ - Tlabo + yall
and
|bo| |b202|
las| < + > >
I3-T512@ppu+p—w)+1]  2-T)*[2pu+p—w) +1]
where
1—-t"
T, = =1+t+t*+- 4+ t"? N.
1—-t
Proof.
Letu € H'B,,{Il1(g,§)}. Then there are two holomorphic schwarz functions f, g : U - U given by
) = ¢ + a8% + azg® + - (e (8)
_ 9(Q) = BiG + BrG% + 307 + - ¢ el) €)
with f(0)=g(0)=0 and [f(O)I<1 [gDI<1 (.{€U)
Hence, we have
la;]<1 and |Bil<1, V i€N (10)

Now using (8) and (9) in (5) and (6), we have
(A =lpu & u" (@ + Qpu+p—wW§u" @) +§w @]
pu &2 u"(§) — t2u" ()] + (p — wé[u'(©) — tw' ()] + (1 — p + ) [u(§) — utd)]
= (o, fE)+1-a

(11D

and
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(A=0lpu v (@) + Cpu+p—WFZ V") + V' (D]
pu [V — 2" (D] + (p — WiV () — tv' D] + (1 — p + W[v(D) — v(td)]

= M, g())+1-a
(12)
where ¢,¢ € Uand v is given by (2).
Now (11) =
— — 2,2
1+ 2= T{@pu+p— )+ 1ay § —{ G TNGRF P m i)+ L el T

-B-T)[2Bpu+p—w + 1]a3}‘f2 +eo=M(o,fEN+1-a

(13)
where
Mo, f(©) +1-a = 1—a+h(0) + hy(0)f(§) + h3(@)f*(§) + -
= 1+ hy(0)ay & + [hy(0)a, + hy(o)af]E? + - (14)
Equating coefficients of & and &2 from (13) and (14), we get
3 (’?1 ;[5%)3[(2/),“ +p _).“)1"]' 1]a; = hy(0)ay (15)
-1 putp—p)+ljag ) _
L s o + 1170 .} = ha @ + b (e
Now (12) =
Q-T)[Cpu+p—w) +1]%a5 T, 2,
@l p-w+ el —{_ o T e - el
=M(0,9({)+1—-a
(17)
where H(a,g(()) +1—a =1-a+h(0)+hy(6)g(Q) + h3(6)g?() + -
= 14 hy(0)f1 ¢ + [hy(0)Bs + h3(0)BEIS? + - (18)
Equating coefficients of ¢ and {2 from (17) and (18), we get
-2 -T)[@pu+p—w) + 1]a; = hy(0)B; (19)

{(3 = T)[2@pu + p — ) + 1](2a3 — a3)

~@2-T)[@pu+p—w) +11%a3 T,
From (15)and (19), we have
ay = —p, (21)

(af + B7) h3(0)
2 -T)*[@pu+p—p) +1J?

(2ai) hi(o)

J= 18, +h@B2 @0)

Now (15)? + (19)* =

2
2a; =

using (21) in the above, we get

2 S L [@ent p— ) 1P =
PN Ch T,)*[2pu+p — @) +1]% a3 23)
b h3 (o)
Now by summing (16) and (20)
B-T)RBpu+p—-—wW+1 | , _ 2, p2
23 it o @ = el + il + (e +
Since by (21), we have
B-T)R2Bpu+p—wW+1] | , _ 2
2{_(2 —T)[2pu + p — ) + 112 Tz}az = hy(0)[a; + 2] + h3(0)[2a{] (24)
By substituting (23) in (24), we have
(B —T)h3 (@) [2Bpu +p — 1) +1] 2 _ 3
2o ot s o 0+ EURTL 5 2 - Tomoy) % = Ol + i -
2
Therefore, by using (10), we obtain
0, < |bal|/|bo|
(3 —T3)[b?0?]
eout o=+ UL it p - + 102057, + 2~ Tlxbo® + yal))
Now we have to find bound for |a;|, Lets subtract (19) from (15), then we get
23 —T)[2Bpu+ p — 1) + 1l{as — a3} = hy(0)[a; — Bo] (26)

Hence, we get

5617



Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5615-5620
Research Article

[ay — 2]

b
B -T3)[2Bpu +p —u) + 1]las| < i > + (B =T)[2Bpu+p — ) + 1]lay|?

(27)

Now use (22) in (27), we obtain
|ba| |b2a2|
las]| < +
3-T51[2@pu+p—w+1] Q2-T)*[Rpu+p—u)+1]?
where T,, T; are given by (7).
If we take the parameters p =0,y =0,t =0 and p=1,u=0,t =0, in the above theorem, we have the
following bounds of initial Taylor coefficients |a,| and |as| for the function classes SHBx{Il(c,é)}and
KHBs{Il(o, £)} respectively
Corollary 1.
Let u given by (1) be in the class SHBs{I1(g, &)}, Then

0| < |baly/|bo]
2= \/bzaz — (xbo? + ya)
and
bo
las]| < |2_| + b%g?
Corollary 2.
Let u given by (1) be in the class KH Bz{I1(o, )}, Then
la,| < |bal/|bo|
2= J2b20% — 4(xbo? + ya)
and
0] < |ba| N b%0?
Bl="g Ty

3 Fekete-Szego Inequalities for the Function Class #B,, ,, {I1(a, §)}

Fekete and Szego [12] introduced the generalized functional |a; — A a3|, where A is some real number. Due to
Zaprawa [13], in the following theorem we determine the Fekete-Szego functional for u € H'B,, , .{T1(0, )}
Theorem 2.

Let u given by (1) be in the class HB, , {Il(c,£)} and A € R. Then we have

[bo| . 1
<
lay — 22| < EE e T LA rew o rrepmrmm ey
- . 1
2|bo|d (A, o), if |[pA,0)| =

2(3-T3)[2(Bput+p—w)+1]

(1-Dh3 (o)

¢(1.0) = 2{ 3-T)hZ (@) [2GBpu+p-1)+11-2-T)[(2pu+p-1)+112{h3 () T2+ (2-T2h3(0)}}
(28)
and T,, T, are given by (7)
Proof.
From (25) and (26), we obtain
2 h,(0)[a; — Bl
a3 - az =
23 - TZ)[(Z():%[PM + Z T W +1]
g)|dy, —
a; —Aa: = 2 2 2 + (1= A)a3
TR~ 1] (=M
_ az — p2
= @) Sa TR T T T @ e
1
=) [(2(3 —TRGm+p-p 1 o ”)> "

1
2B -T[2@pu+p—w) + 1]>ﬁ2

+@@@—
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Then, by taking modulus, we conclude that
lbol i 160, o) < -
) 1 IG —_—
13 - Tsl[2@pr+p — W) +1] 2B -Ta)[2@pr+p— W) +1]

_ 1
2Ibol|$ (2, o)1, if 100,0)| 2 5 mEe s

lag —Aa3| <

where ¢ (4, o) is given by (28).

If we take the parameters p =0, u =0, t=0andp =1, u =0, t =0, in the above theorem, we have the
following Fekete-Szego inequalities for the function classes SH'Bs {I1(o, £)} and KH By {I1(o, )}, respectively.
Corollary 3.

Let u given by (1) be in the class SH'Bs {I1(0, &)} and 1 € R, Then we have

{@ -l <|b202—(xbo'2+ya)|
0y — Aa2] < ’ - 2|b20?|
3 2t = [1—2]|b3a3] ) |b262 — (xbo? + ya)|
) if 1=2] =
|b2062% — (xbo? + ya)| 2|b%0?|
Corollary 4.
Let u given by (1) be in the class KH Bs {I1(0, &)} and A € R, Then we have
|ba| ] 12l < |b262 — 2(xba? + ya)|
laz —Aa2| < 6" v B 3|b%a?|
3 2= [1—2A||b3c3| ] |b%26?% — 2(xba? + ya)|
, o if 1=z
k2|b202—2(xb62+ya)| - 3|b?%0?|
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