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Abstract: The aim of this paper is to apply Lucas polynomial, in order to obtain the initial coefficients on 2a and 

3a  belonging to the new subclass ( ),L   of analytic, univalent and Sakaguchi functions as defined in the open 

unit disc . Furthermore, the Fekete – Szego inequality is also investigated for this subclass.  
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1 Introduction 

 In ([4], [5]), for any variable quantity x , Lucas polynomials )(xLn  are explained recursively as follows: 
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from which the first few Lucas polynomials can be identified as 
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By letting 1=x  in the Lucas polynomials the Lucas numbers are deduced. The ordinary 

generating function of the Lucas polynomials is 
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Various authors have analyzed the properties of the Lucas polynomials and obtained many fruitful results. It is 

widely accepted that many number and polynomial sequences can be generated by recurrence relations of second 

order. Of these the important sequences remain celebrated sequences of Lucas. These sequences of polynomials and 

numbers are of great importance in different branches such as physics, engineering, architecture, nature, art, number 

theory, combinatory and numerical analysis. These sequences have been carefully considered in several papers from 

a theoretical point of view (see, [7, 8, 10, 16, 17]). 

Let A be the family of functions f that are analytic in the open unit disk  1: = zCz  of the form:  




=

+=
2

)(
k

k

k zazzf                                                             (2) 

For Azh )( , given by  
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Let S mean the subclass of A consisting of univalent functions in . It is well known (refer[1]) that every 

function of Sf   virtually possesses an inverse of f, defined by )(,)]([1 =− zzzff  and 
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 When the function Af   is bi univalent, both f and 
1−f are univalent in . Let   be the class of bi 

univalent functions in   given by (2). In fact, Srivastava et al.[15] have revived the study of analytic and bi 

univalent functions in recent years. Many researchers investigated and propounded various subclasses of bi 

univalent functions and fixed the initial  coefficients 2a and 3a  (refer [3, 6, 9, 12, 13, and 14]). 

 For analytic functions f and g , f is said to be subordinate to g, denoted ( ) ( )zgzf  , if there is an analytic 

function w such that ( ) ( ) 1,00 = zww  and ( ) ( )( )zwgzf = .  

A function Sf  is said to be Bazilevic function if it satisfies (see[12]): 

: 

( )
( )( )

0
1

1













 


−

−





zf

zfz
,     ( )0,  z    

This class of the function was denoted by B . Consequently when 0= ,  the class of starlike function is 

obtained. 

Frasin [2] investigated the inequalities of coefficient for certain classes of Sakaguchi type functions that 

satisfy geometrical condition as 
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for complex numbers  s, t but s ≠ t and α (0 ≤ α < 1) . 

 The objective of this paper is to introduce convolution in Sakaguchi type of new subclass ( ),L  of   

and find estimates on the coefficient 2a  and 3a  for functions in the new subclass. The Fekete – Szego functional 

2

23 aa −  for this subclass is also obtained. 

2 The class ( ),L
 

 This section  defines  the class ( ),L  and attempts to find the estimates on the coefficients 2a and 3a for 

functions in this class.
 

Definition 2.1 : For 0 , 1 but 1 , the function f is said to be in the class ( ),L , if the following 

conditions are satisfied: 
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where  
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Remark 2.1: For 0= , the function ( ),Lf , if the following subordination conditions are satisfied : 
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which were studied by Sahsene Altinkaya  et al [11] when the parameters k = 0 and µ = 1. 

Remark 2.2: For 0= , the function ( ), Lf , if the following subordination conditions  are satisfied : 
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that are studied by Sahsene Altinkaya et al [11].   

 

Theorem 2.1: For 0 , 1 but 1 , let f given by (2) be in the class ( ),L . Then  
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Proof.  Let ( ),Lf . Then there are two analytic functions , such as ( ) ( ) 000 ==   and  ( ) 1z
 
,

( ) 1w for all wz, , which can be written as 
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From the equalities (6) and (7).it is obtained that  
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It is well known that if  
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Comparing the coefficients in (8) and (9),  

                                          ( )( )( ) ( ) 112112 rxLa =+−−                                                  (11) 
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It follows from (11) and (13) that 
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By summing (12) and (14), it is obtained that  
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By substituting the values of  ( )2

1

2

1 sr +  from (16) in the right side of (17), it is deduced that  
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Moreover by computations using (1), (10) and (18), it is found that  
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By subtracting (12) and (14) , it is obtained that  
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Thus applying (1), it is concluded that 
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By setting 0= in Theorem 1, it is claimed that 

Corollary 2.1:  If  f  belongs to ( )L ,then  
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and  
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which was studied by Sahsene Altinkaya  et al [11] when the parameters k = 0 and µ = 1. 

By putting λ = 0, in Theorem 1, it is obtained that, 

Remark  2.1 : If  f  is belongs to LΣ,, then  
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which was studied by Sahsene Altinkaya  et al [11]. 

3 Fekete- Szego Inequalities for the function class ( ),L . 

 In this section, it is attempted to provide Fekete – Szego inequalities for functions in the class ( ),L . These 

inequalities are given in the following theorem. 

Theorem 3.1: For  , the function ( ) ,, Lf . Then  
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Proof : From (14) and (15), it is observed that  

( ) ( )( )
( )( )( ) ( )( ) ( ) ( )( )  ( )

( )( )( ) ( ) 











+−−−

++−+−−++−−

+−
=−

xL

xL

srxL
aa

3

2

2

1

2

22

3

12

23

1122

112111132

1








 

                 

( )( )
( )( )( )2

221

1132  ++−−

−
+

srxL
. 

     
( ) ( )

( )( )( )
( )

( )( )( ) 
















++−−
−+









++−−
+= 22221

1132

1

1132

1
srxL







 

Where  
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Setting µ = 0 in Theorem 3.1, we have                             

Corollary 3.1: For  , let the functions ( ), Lf . Then 
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which was investigated by Sahsene Altinkaya et al [11]. 

Taking the parameter 0= in the above Corollary 3.1 

Remark 3.1: For  , let the function ( ) Lf , then 
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That was obtained by Sahsene Altinkaya et al [11]. 

Putting 1= in Theorem 3.1, we have  

Corollary 3.2: If the function ( )1,, Lf , then 
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which was investigated by Sahsene Altinkaya et al [11]. 

By setting the parameters 0= and 0= . 

Remark 3.2: Let the function  Lf , then 
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which was studied by Sahsene Altinkaya et al [11]. 
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