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Abstract: This paper presents a simple and efficient approach for finding the bridges and failure points in a densely connected 
network mapped as a graph. The algorithm presented here is a parallel algorithm which works in a distributed environment. 
The main idea of our algorithm is to generate a sparse certificate for a graph and finds bridges using a simple DFS (Depth First 
Search). We first decompose the graph into independent and minimal subgraphs using a minimum spanning forest algorithm. 
To identify the bridges in the graph network, we convert these subgraphs into a single compressed graph and use a DFS 

approach to find bridges. The approach presented here is optimized for the use cases of dense graphs and gives the time 
complexity of O(E/M + Vlog(M)), for a given graph G(V,E) running on M machines.  
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1. Introduction  

The bridges of a graph G(V, E) are those edges which, if removed individually, will contribute to increase the 

connected components of graph G [2]. Finding bridges in a graph has many applications in real-world 

systems like network bottlenecks, fault determination, vulnerabilities in a connected network and are useful for 

designing reliable networks. Of particular interest has been to develop algorithms for densely connected networks 

in real-world systems. In this direction, Alan P. Sprague and K.H. Kulkarni have presented algorithms for bridges 

in a parallel setting which relies heavily on the parallel prefix algorithm and is limited to interval graphs [1]. 

But the algorithms for dense networks are not much worked upon, unlike sparse graphs such as C. Savage and 

Joseph Ja’Ja’[3], which are optimized for sparse graphs with a time complexity of  (log n) using  (n3) processors. 

These approaches work well for sparse graphs, but the algorithms don’t perform well for dense networks. In this 

paper, we design a simple and efficient algorithm that considers a simple Depth First Search (DFS) approach to be 

worked in a parallel setting optimized for densely connected graphs. 

1.1.Motivation 

One of the crucial facts that motivate our method to find bridges and its algorithm in sequential environment is 

that finding bridges in a graph is a relatively easier task. In a graph, one can use a simple depth-first search 

to find bridges. 

But in a distributed system parallelizing a DFS is not trivial and poses some challenges. In summary, it is not 

efficient to parallelize the idea of simple DFS to find a bridge. But we can optimize this approach for dense 

graphs by making several independent sparse graphs and then run our bridge finding algorithm on different 

machines, which is later formed into a single graph. We use this idea in our algorithm. Since in real- world 

scenarios of the network, graphs are dense, and this approach is usually very fast. Another advantage of such an 

algorithm is the simplicity of implementation in identifying the bridges in dense graphs. The idea of breaking 

graphs into sparse subgraphs is conducive to distributed environment. 

1.2.Our Contribution 

We design a parallel algorithm that is simple to under- stand and implement. The idea of making independent 

sparse subgraphs makes the sequential algorithm of finding bridges applicable to parallel environments. The most 

important aspect of our algorithm is how it is optimized for a dense network. We use certificate theorem to exploit 

graphs’ properties and make our simple sequential algorithm efficient for a distributed system. 

1.3.Related Work 

There are several parallel algorithms for finding bridges in a graph. For a graph G with n vertices and m 

edges, Yung H. Tsin and Francis Y. Chin [10] provided the parallel algorithm for finding bridges in a connected 

graph. Recent work to find articulation points that can be modified to find bridges is done by George M. Slota and 

Kamesh Madduri [5] to find cut points in a large undirected sparse graph. The algorithm is based on identifying 

articulation points, and labeling edges using multiple connectivity queries. Alan P. Sprague and K.H. Kulkarni do 

another work to find bridges in a parallel setting that relies on interval graphs [1]. 
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1.4.Organisation of Paper 

The paper is organized into various sections. In Section 2, we provide the existing algorithms related to our 

work. In Section 3, we describe and present our approach to solving the problem and various lemmas used to 

get to the final idea. Section 4 describes the formal process and algorithm for our 

approach. The analysis of time complexity is presented in section 5. A comparative analysis is done with the 

existing work in section 6. We provide ideas for further improvements and optimizations in Section 7. In Section 

8, concluding points are then made, which marks the end of our paper following the references section. 

2.Existing Work 

An efficient bridge algorithm is provided by Carla Savage and Joseph Ja’Ja’. It is given that for a graph 

G(V, E) be a connected, undirected graph, an algorithm with time complexity of    (n2 log3 n) is provided [3]. 

Yung H. Tsin and Francis Y. Chin [10] presents a parallel algorithm to find all bridges in a connected, undirected 

graph in     ( n + log2 n) time with nK(K   1) processors. An inverted tree S(V, E′) is constructed for graph G(V, 

E) and then, with the help of (HLCA) highest lowest common ancestor bridges are computed. Susanne E. 

Hambrusch [9] paper discusses an approach to find bridges and biconnectivity on Minimum Area Meshes. The 

presented algorithms find the bridge-connected components in  (n 2 ) time for a 2- dimensional mesh of    (n) area, 

both input in the form of an adjacency matrix and in the form of edges. 

3.Our Approach 

We design a simple and efficient approach to solve the problem of finding bridges in a graph by 

extending the DFS (Depth First Search) to find bridges in a graph. We extend the sequential algorithm for 

computing bridges using depth-first search (DFS) algorithm for graph G = (V, E) which runs in (V + E) time 

[8]. The design of our algorithm is optimized for the case when there are a huge number of edges in the 

graph network but few nodes. Since it is a known fact that DFS is not very well suited for working in a 

parallel setting due to constraints with node discovery, i.e., there might be a large subtree below a node, and 

since one machine would be working on that node, it will be somewhat equivalent to a sequential algorithm. 

Although there are some ways to tackle this problem, it’s still not a great idea to directly parallelize a DFS 

algorithm. Our algorithm works to use the multiple nodes of a cluster machine to run a DFS on a reduced graph 

in such a way that the result from individual machines can be later combined to get to the final result. Our 

approach would be similar to a divide and conquer algorithm; first, we divide our graph into sparse certificates 

and find a solution by distributing it on different machines, which are later combined to form the final solution. 

Consider a graph G = (V, E). We will find a sparse certificate S where S E. Also, for this sparse certificate 

we can say that for any set X V  V , G(V, E  Y ) = G(V, S  Y ). So we can say that a sparse certificate with an 

edge set S can replace the original edge set E and the 2 graphs formed respectively would be equivalent for our 

purpose of finding bridges [4]. 

Lemma 1. Let there be a graph G(V, E) and let the number of nodes be n and number of edges be m. Then 

there existsa sparse certificate edge set S for graph G such that S 2(n 1) where S is the number of 

edges for the sparse certificate edge set [4]. 
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5.Algorithm 

5.1.General Dfs Algorithm 

This gives us the simple DFS algorithm for finding bridges at the final point in our sparse graph [8]. We can 

see the Algorithm 1 for the formal explanation. 

5.2.Sparse certificates algorithm 

In this section we see the major algorithm to find the sparse certificates of a edge set with the help of a data 

structure called union-find [6] and the subroutine DFS is used to traverse the 
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Fig. 1. Phases of Algorithm 

 

Algorithm 1 Bridge algorithm 

1:   procedure DFS-BRIDGE(start) 

2: time 0 

3: disc[start] time + 1 

4: low[start] time + 1 

5: for all vertex v in the graph G do 

6: if there is an edge between (start, v) then 

7: if v is visited then 

8: parent[v] start 

9: DFS-BRIDGE(v) 

10: low[start] min(low[start], low[v]) 

11: if low[v] > disc[start] then 

12: mark bridge from start to v 

13: elseIf v is not the parent of start 

14: low[start] ← min(low[start], disc[v]) 

 15: done  

graph, presented in Algorithm 3. We can see the Algorithm 2 for the formal explanation. 

Algorithm 2 Sparse certificates algorithm  

1: procedure CERTIFICATE 

2: Construct a Union-Find Data structure 

3: Pick a vertex and start a DFS algorithm subroutine 

4: Check for cycles using Union-Find functions and we get a graph F 

5: F is the spanning forest for graph G = (V, E) 
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6. Runtime Analysis 

DFS algorithm for finding bridges in an undirected graph G(V, E) is a sequential algorithm which takes (V 

+ E) time on a single machine [8]. The algorithm to find Sparse 

 

 

Fig. 2. M is number of machines, |E| = 10000000, |V | = 100000 
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7.Comparative Analysis 

For the comparative analysis we picked the algorithm for finding bridges by Carla Savage and Joseph Ja’Ja’ 

[3] and we can see from the Fig 5 that the algorithm presented here works 

setting to further optimize our approach. There is some notable work done to improve union find algorithms in a 

distributed environment such as given by Fredrik Manne and Md. Mostofa Ali Patwary [7]. 

 

Fig. 3. |V | is number of vertex, |E| = 100000, M = 10 

 



Turkish Journal of Computer and Mathematics Education  Vol.12 No.10 (2021), 4550-4556 

 

4556 

 

 

 

Research Article  

Fig. 4. |E| is number of edges, |V | = 100000, M = 10 

really well for dense graphs and eclipses the other algorithm as we go on increasing the number of edges in 

the graph. 

8.Further Improvements 

For further improving the solution provided in this paper we can go on to parallelize it further. The 

algorithm that we are using to find the sparse certificate is currently a sequential approach. This algorithm can 

be implemented in a parallel 

9.Conclusions 

In the paper, a unique parallel approach for identifying the bridges in a densely connected graph for a 

distributed environment is presented. The runtime analysis shows promis- ing result for densely connected 

networks and graphs when compared with other works done in this field 
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