
Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

4550

Research Article

O O

An Efficient Parallel Algorithm for finding Bridges in a Dense Graph

Ashwani Kumar a, Aditya Pratap Singh b

a ,bIndependent Scholar Delhi, India

email:a ashwanisinghnet@gmail.com, bpratapaditya1997@gmail.com

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28

April 2021

Abstract: This paper presents a simple and efficient approach for finding the bridges and failure points in a densely connected
network mapped as a graph. The algorithm presented here is a parallel algorithm which works in a distributed environment.
The main idea of our algorithm is to generate a sparse certificate for a graph and finds bridges using a simple DFS (Depth First
Search). We first decompose the graph into independent and minimal subgraphs using a minimum spanning forest algorithm.
To identify the bridges in the graph network, we convert these subgraphs into a single compressed graph and use a DFS

approach to find bridges. The approach presented here is optimized for the use cases of dense graphs and gives the time
complexity of O(E/M + Vlog(M)), for a given graph G(V,E) running on M machines.

Keywords: Bridges, Parallel Algorithms, Distributed Sys- tems, Graph Theory, Computational Complexity

1. Introduction

The bridges of a graph G(V, E) are those edges which, if removed individually, will contribute to increase the

connected components of graph G [2]. Finding bridges in a graph has many applications in real-world

systems like network bottlenecks, fault determination, vulnerabilities in a connected network and are useful for

designing reliable networks. Of particular interest has been to develop algorithms for densely connected networks

in real-world systems. In this direction, Alan P. Sprague and K.H. Kulkarni have presented algorithms for bridges

in a parallel setting which relies heavily on the parallel prefix algorithm and is limited to interval graphs [1].

But the algorithms for dense networks are not much worked upon, unlike sparse graphs such as C. Savage and

Joseph Ja’Ja’[3], which are optimized for sparse graphs with a time complexity of (log n) using (n3) processors.

These approaches work well for sparse graphs, but the algorithms don’t perform well for dense networks. In this

paper, we design a simple and efficient algorithm that considers a simple Depth First Search (DFS) approach to be

worked in a parallel setting optimized for densely connected graphs.

1.1.Motivation

One of the crucial facts that motivate our method to find bridges and its algorithm in sequential environment is

that finding bridges in a graph is a relatively easier task. In a graph, one can use a simple depth-first search

to find bridges.

But in a distributed system parallelizing a DFS is not trivial and poses some challenges. In summary, it is not

efficient to parallelize the idea of simple DFS to find a bridge. But we can optimize this approach for dense

graphs by making several independent sparse graphs and then run our bridge finding algorithm on different

machines, which is later formed into a single graph. We use this idea in our algorithm. Since in real- world

scenarios of the network, graphs are dense, and this approach is usually very fast. Another advantage of such an

algorithm is the simplicity of implementation in identifying the bridges in dense graphs. The idea of breaking

graphs into sparse subgraphs is conducive to distributed environment.

1.2.Our Contribution

We design a parallel algorithm that is simple to under- stand and implement. The idea of making independent

sparse subgraphs makes the sequential algorithm of finding bridges applicable to parallel environments. The most

important aspect of our algorithm is how it is optimized for a dense network. We use certificate theorem to exploit

graphs’ properties and make our simple sequential algorithm efficient for a distributed system.

1.3.Related Work

There are several parallel algorithms for finding bridges in a graph. For a graph G with n vertices and m

edges, Yung H. Tsin and Francis Y. Chin [10] provided the parallel algorithm for finding bridges in a connected

graph. Recent work to find articulation points that can be modified to find bridges is done by George M. Slota and

Kamesh Madduri [5] to find cut points in a large undirected sparse graph. The algorithm is based on identifying

articulation points, and labeling edges using multiple connectivity queries. Alan P. Sprague and K.H. Kulkarni do

another work to find bridges in a parallel setting that relies on interval graphs [1].

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

4551

Research Article

O

K

≥

3

O O

O

∪

⊆

O

1.4.Organisation of Paper

The paper is organized into various sections. In Section 2, we provide the existing algorithms related to our

work. In Section 3, we describe and present our approach to solving the problem and various lemmas used to

get to the final idea. Section 4 describes the formal process and algorithm for our

approach. The analysis of time complexity is presented in section 5. A comparative analysis is done with the

existing work in section 6. We provide ideas for further improvements and optimizations in Section 7. In Section

8, concluding points are then made, which marks the end of our paper following the references section.

2.Existing Work

An efficient bridge algorithm is provided by Carla Savage and Joseph Ja’Ja’. It is given that for a graph

G(V, E) be a connected, undirected graph, an algorithm with time complexity of (n2 log3 n) is provided [3].

Yung H. Tsin and Francis Y. Chin [10] presents a parallel algorithm to find all bridges in a connected, undirected

graph in (n + log2 n) time with nK(K 1) processors. An inverted tree S(V, E′) is constructed for graph G(V,

E) and then, with the help of (HLCA) highest lowest common ancestor bridges are computed. Susanne E.

Hambrusch [9] paper discusses an approach to find bridges and biconnectivity on Minimum Area Meshes. The

presented algorithms find the bridge-connected components in (n 2) time for a 2- dimensional mesh of (n) area,

both input in the form of an adjacency matrix and in the form of edges.

3.Our Approach

We design a simple and efficient approach to solve the problem of finding bridges in a graph by

extending the DFS (Depth First Search) to find bridges in a graph. We extend the sequential algorithm for

computing bridges using depth-first search (DFS) algorithm for graph G = (V, E) which runs in (V + E) time

[8]. The design of our algorithm is optimized for the case when there are a huge number of edges in the

graph network but few nodes. Since it is a known fact that DFS is not very well suited for working in a

parallel setting due to constraints with node discovery, i.e., there might be a large subtree below a node, and

since one machine would be working on that node, it will be somewhat equivalent to a sequential algorithm.

Although there are some ways to tackle this problem, it’s still not a great idea to directly parallelize a DFS

algorithm. Our algorithm works to use the multiple nodes of a cluster machine to run a DFS on a reduced graph

in such a way that the result from individual machines can be later combined to get to the final result. Our

approach would be similar to a divide and conquer algorithm; first, we divide our graph into sparse certificates

and find a solution by distributing it on different machines, which are later combined to form the final solution.

Consider a graph G = (V, E). We will find a sparse certificate S where S E. Also, for this sparse certificate

we can say that for any set X V V , G(V, E Y) = G(V, S Y). So we can say that a sparse certificate with an

edge set S can replace the original edge set E and the 2 graphs formed respectively would be equivalent for our

purpose of finding bridges [4].

Lemma 1. Let there be a graph G(V, E) and let the number of nodes be n and number of edges be m. Then

there existsa sparse certificate edge set S for graph G such that S 2(n 1) where S is the number of

edges for the sparse certificate edge set [4].

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

4552

Research Article

5.Algorithm

5.1.General Dfs Algorithm

This gives us the simple DFS algorithm for finding bridges at the final point in our sparse graph [8]. We can

see the Algorithm 1 for the formal explanation.

5.2.Sparse certificates algorithm

In this section we see the major algorithm to find the sparse certificates of a edge set with the help of a data

structure called union-find [6] and the subroutine DFS is used to traverse the

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

4553

Research Article

←

←

←

←

←

Fig. 1. Phases of Algorithm

Algorithm 1 Bridge algorithm

1: procedure DFS-BRIDGE(start)

2: time 0

3: disc[start] time + 1

4: low[start] time + 1

5: for all vertex v in the graph G do

6: if there is an edge between (start, v) then

7: if v is visited then

8: parent[v] start

9: DFS-BRIDGE(v)

10: low[start] min(low[start], low[v])

11: if low[v] > disc[start] then

12: mark bridge from start to v

13: elseIf v is not the parent of start

14: low[start] ← min(low[start], disc[v])

 15: done

graph, presented in Algorithm 3. We can see the Algorithm 2 for the formal explanation.

Algorithm 2 Sparse certificates algorithm

1: procedure CERTIFICATE

2: Construct a Union-Find Data structure

3: Pick a vertex and start a DFS algorithm subroutine

4: Check for cycles using Union-Find functions and we get a graph F

5: F is the spanning forest for graph G = (V, E)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

4554

Research Article

O

6. Runtime Analysis

DFS algorithm for finding bridges in an undirected graph G(V, E) is a sequential algorithm which takes (V

+ E) time on a single machine [8]. The algorithm to find Sparse

Fig. 2. M is number of machines, |E| = 10000000, |V | = 100000

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

4555

Research Article

7.Comparative Analysis

For the comparative analysis we picked the algorithm for finding bridges by Carla Savage and Joseph Ja’Ja’

[3] and we can see from the Fig 5 that the algorithm presented here works

setting to further optimize our approach. There is some notable work done to improve union find algorithms in a

distributed environment such as given by Fredrik Manne and Md. Mostofa Ali Patwary [7].

Fig. 3. |V | is number of vertex, |E| = 100000, M = 10

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

4556

Research Article

Fig. 4. |E| is number of edges, |V | = 100000, M = 10

really well for dense graphs and eclipses the other algorithm as we go on increasing the number of edges in

the graph.

8.Further Improvements

For further improving the solution provided in this paper we can go on to parallelize it further. The

algorithm that we are using to find the sparse certificate is currently a sequential approach. This algorithm can

be implemented in a parallel

9.Conclusions

In the paper, a unique parallel approach for identifying the bridges in a densely connected graph for a

distributed environment is presented. The runtime analysis shows promis- ing result for densely connected

networks and graphs when compared with other works done in this field

References

1. Alan P. Sprague, & K.H. Kulkarni (1992). Optimal parallel algorithms for finding cut vertices and

bridges of interval graphs. Information Processing Letters, 42(4), 229 - 234.

2. Bolloba´s, Be´la (1998), Modern Graph Theory, Graduate Texts in Math- ematics, 184, New York:

Springer-Verlag, p. 6, ISBN 0-387-98488-7, MR 1633290.

3. C. Savage, J. Ja’Ja’, Fast, efficient parallel algorithms for some graph problems, SIAM J. Comput. 10

(4) (1981) 682–691

4. Cheriyan, J., Kao, M.Y., & Thurimella, R. (1993). Scan-First Search and Sparse Certificates: An

Improved Parallel Algorithm for k -Vertex ConnectivitySIAM Journal on Computing, 22, 157-174.

5. G. M. Slota, & K. Madduri (2014). Simple parallel biconnectivity algo- rithms for multicore platforms.

In 2014 21st International Conference on High Performance Computing (HiPC) (pp. 1-10).

6. Galil, Z., & Italiano, G. (1991). Data Structures and Algorithms for Disjoint Set Union ProblemsACM

Comput. Surv., 23(3), 319–344.

7. Manne, F., & Patwary, M. (2009). A Scalable Parallel Union-Find Algorithm for Distributed Memory

Computers

8. Shiva Basava P, https://iq.opengenus.org/find-all-bridges-in-graph

9. Susanne E. Hambrusch (1985). Parallel Algorithms for Bridge- and Bi-

10. Connectivity on Minimum Area Meshes

11. YungH. Tsin, & Francis Y. Chin (1983). A general program scheme for finding bridgesInformation

Processing Letters, 17(5), 269 - 272.

