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Abstract: This paper envisages the use of Liouville Green Transformation to find the solution of singularly
perturbed delay differential equations. First, using Taylor series, the given singularly perturbed delay differential
equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green
Transformation is applied to get the solution. The method is demonstrated by implementing several model examples
by taking various values for the delay parameter and perturbation parameter.
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Introduction

A singularly perturbed delay differential equation is an ordinary differential equation in which the highest
derivative is multiplied by a small parameter and containing delay term. In recent years, there has been a growing
interest in the numerical treatment of such differential equations. This is due to the versatility of such type of
differential equations in the mathematical modeling of processes in various application fields, for e.g., the first exit
time problem in the modeling of the activation of neuronal variability [9], in the study of bistable devices [2], and
variational problems in control theory [5] where they provide the best and in many cases the only realistic
simulation of the observed. Stein [11] gave a differential-difference equation model incorporating stochastic effects
due to neuron excitation. Lange and Miura [9, 10] gave an asymptotic approach for a class of boundary-value
problems for linear second-order differential-difference equations. Kadalbajoo and Sharma [7, 8], presented a
numerical approaches to solve singularly perturbed differential-difference equation, which contains negative shift in
the either in the derivative term or the function but not in the derivative term. In this paper we describe the use of
Liouville Green Transformation to find the solution of singularly perturbed delay differential equations. First, using
Taylor series, the given singularly perturbed delay differential equation is approximated by an equivalent singularly
perturbation problem. Then the Liouville Green Transformation is applied to get the solution. The method is
demonstrated by implementing several model examples by taking various values for the delay parameter and
perturbation parameter.

2. Description of the method
Consider singularly perturbed singular boundary value problems of the form

Ly=¢ey"(x)+a(x)y'(x—=90)+b(x)y(x) =0, 0<x<1, (1)
with boundary conditions y0)=a, -6 <x<0 (2a)
and  y()=p (2b)

where 0< & <<1, b(x) is bounded continuous function in (0, 1) and «, 5 are finite constants. Further, we
assume that a(X) > M > 0 throughout the interval [0, 1], where M is positive constant. This assumption merely

implies that the boundary layer will be in the neighbourhood of x = 0.
By using Taylor series expansion in the neighbourhood of the point x, we have

y'(x=0)=y'(x)-0oy"(x)
y'(X+38)=y'(X)+5y"(x) @ UsngEq. ()

into Eq. (1), we obtain an asymptotically equivalent singularly perturbed first order differential-difference equation
of the form:
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—ey"(x)+ F()Y'()+g()Y(x) =0 “
_a(x) _ b(x)
where T (X) = ra(x)-1’ 9(x) = ra(x) -1

Transition from Eq. (1) to Eq. (4) is admitted, because of the condition that O < & <<1 is sufficiently small. This
replacement is significant from the computational point of view. Further details on the validity of this transition can
be found in Elsgolt’s and Norkin [5]. Thus, the solution of Eq. (4) will provide a good approximation to the solution
of Eq. (1).
3. Liouville Green Transformation:

Rewrite the equation (4) as below:

—ey"(x)+ F ()Y () +g(x)y() =0, xe[0,1] 9
The Liouville —Green transforms Z, (D(X), V(Z)
2= () == [ £ (0 ®
&
#(X) = 9'(¥) =§ F(x) o
V() = 4(X)y(x) ®
According (8), we have
dy_ 1 dv W) P D ()
g9 az” g0 " g0 @ g ©

#° (X
dZy:i[ ( 2¢(x)¢(x)jdv] (¢ (x>_2¢>‘2<X>Vj. )
dx*  #(x) g(x) Jdz () 9 (%)
From (5),(9) and (10), we obtain

_%'Zd_z\/+[28(0l¢' B 8(0"()() N f(X)M]@-I-[gW‘(X) _ 28(0'2()() _ f(X) ¢|(X) g(X)]V(Z) =0.i.
g 4\ ¢ 4 §(x) Jdz () F'(X) |

dg 1( - 208 f()ca(x)jdv {2[¢"(x) 2¢"° ETRACN g(x)jv(z):q
dz ¢ dz p?\ g(x) ¢ ep(x) ¢

From (6), we have

d’v ( f'(x) 1jdz 1 (ng"(X)_zg (()) gf'(X)—i—é‘g(X)\JV(Z):O,

dz? f2(x) f2(x) f(x)
aév v fx) dv 1 f'(x) f2(x) ., _ dv
F_E_gf o dz fz(x) (g n -2¢ ) ~f (x)+g(x))v(z)_gM (X)E+5N(X)V(Z)
(11)
ere _ f'(x) _ 1 f(x) B f(x)
Wh M (x) fz(X),N(x,g) fz(x)[g n 2¢ ) -F'(X)+g( )j

f
Since € is a small parameter ((0 < & <<1),e6M(X) and gN(X, &)are sufficiently small on [0, 1]. So, as ¢ — 0 ,the
right hand side of equation (11) vanishes.
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Therefore, we have

d’v dv

———=~0. (12)

dz* dz

Therefore, the approximate solutions 17 (Z] of (12) are

v(z) = ¢, +C,e° (13)

Where ¢y, C; are two arbitrary constants. From (6)-(8), one has the asymptotic solutions of differential equations
1 X
=1 f(s)ds

V(Z V YA g -f
=YD _ V@ e | "

p00 T T

Where ¢y, C; are two arbitrary constants to be determined using boundary conditions.

4. Numerical Experiments:

To demonstrate the efficiency of the method, we consider two numerical experiments with left-end boundary layer
and two numerical experiments with right-end boundary layer. We compare the results with the exact solution of the
problems. Also we have plotted the graphs of the exact and computed solution of the problem for different values

of & and for different values of & of 0(g)andO(g), which are represented by solid and dotted lines
respectively. The maximum absolute error for the examples not having the exact solution is calculated using the

double mesh principle [3] E™ = max‘yiN - ygiN ‘
0<i<N
Example 1. Consider a singularly perturbed delay differential equation with right layer:
&"(X)-y'(x=0)-y(x)=0; xe[0,1]withy(0)=1andy(1)=-1.
The exact solution is given by
) = ((1+eM)e™ —(e™ +1)e™)

y(x
(e —e™)
Wh _(1-V1+4(e+9)) (1+,/1+4(g+5
ere M
1 2(e+0) 2(+0)"

Example 2. Now we consider an example of variable coefficient singularly perturbed delay differential equation
with right layer:

&"(X)—e*y'(x=90)—xy(x) =0, with y(0)=1,y(1)=1
Example 3. Now we consider an example of variable coefficient singularly perturbed delay differential equation
with left layer:

&y"(x)+e Y (x=6) —y(x) =0 withy(0)=1, y(1)=1
Example 4. Consider an example of singularly perturbed delay differential equation with left layer:
&'X)+y'(x-0)-y(x)=0; xe[0,1] with y(0)=1andy(l)=0.
The exact solution is given by
y(x) = ((1-e™)e : + (em —1)e™")
(e™ —e™)

where mlz(_l_m%g_é-) and m, (1+\/m/

5. Discussions and Conclusions

2(e -0)"

This paper envisages the use of Liouville Green Transformation to find the solution of singularly perturbed delay
differential equations. First, using Taylor series, the given singularly perturbed delay differential difference
equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green
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Transformation is applied to get the solution. The method is demonstrated by implementing several model examples
by taking various values for the delay parameter and perturbation parameter.

This method is very easy to implement. The effect of small shifts on the boundary layer solution of the
problem has been given by considering several numerical experiments. It is observed that if & = 0(¢) and as &
increases, the thickness of the boundary layer decreases in the case when the solution exhibits layer behaviour on the

left side, while in the case of the right side boundary layer, it increases and maximum error decreases as the grid size
h decreases in both cases which shows the convergence to the computed solution. This method also gives good

results for & = O(¢).

Table 1.
The maximum error of example 1 with & = 0.1 for different values of o and grid size

o N

102 10° 10* 10°
Proposed method
0.01 3.1086e-012 9.9654e-013  1.4899-013 7.6974e-014
0.03 1.5543e-012 8.4666e-013  1.2590e-013 6.5157e-014
0.06 1.4433e-012 6.8956e-013  1.0125e-013 5.3025e-014
0.08 1.8874e-012 6.1551e-013  9.1149e-014 4.7220e-014
Results in [11]
0.01 0.01172504 0.001225627 1.2310781e-004 1.2280756e-005
0.03 0.01505997 0.00158944 1.5984072e-004 1.5998887e-005
0.06 0.02575368 0.00281263  2.8397624e-004  2.8449687e-005
0.08 0.04781066 0.00562948 5.7357242e-004 5.7485293e-005
Table 2

The maximum error of example 1 with & = 0.01 for different values of ¢ and grid size

o N

10? 10° 10* 10°
Proposed method
0.001 1.1574e-011 9.1869e-012 1.4510e-012 7.6905e-013
0.003 6.1062e-011 7.8688e-012 1.2311e-012 6.5084e-013
0.006 7.5079e-011 6.5016e-012 1.0041e-012 5.2887e-013
0.008 8.0491e-011 5.8206e-012 8.9428e-013 4.7015e-013
Results in [11]
0.001 0.09073569 0.01228700 0.00127926 1.28459¢e-004
0.003 0.10803507 0.01562216 0.00164450 1.65330e-004
0.006 0.12777968 0.02630926 0.00287019 2.89704e-004
0.008 0.10040449 0.04833890 0.00568876 5.79477e-004
Table 3.

The maximum error of example 2 with & = 0.1 for different values of ¢ and grid size

o N

102 10° 104
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Proposed method

0.01 1.7764e-012 6.2761e-013 1.0325e-013

0.03 1.3323e-012 3.6593e-013 5.6510e-014

0.06 1.2212e-012 2.0173e-013 3.0531e-014

0.08 2.2649e-012 1.4855e-013 3.3307e-014

Results in  [11]

0.01 0.00632996 0.000674268 6.7871251e-005
0.03 0.00815917 0.000882563 8.8986856€e-005

0.06 0.01384760 0.001579726 0.00016020004

0.08 0.02477158 0.003173235 0.00032602775
Table 4

The maximum error of example 2 with & = 0.01 for different values of 0 and grid size

) N
102 103 104 10°

Proposed method

0.001 2.2204e-012 5.4035e-013  1.0515e-013 5.1559e-014

0.003 2.2204e-012 3.4365e-013 5.7976e-014  3.0543e-014

0.006 2.2204e-012 2.0103e-013  3.2230e-014  3.0543e-015
0.008 4.4409e-012 1.5116e-013  2.4403e-014 1.7102e-015
Table 5

The maximum error of example 3 with & = 0.1 for different values of & and grid size

o N

10° 10° 10° 10°
Proposed method
0.01 2.1094e-013 2.9421e-014  1.3767e-014 2.2498e-015
0.03 7.7716e-013 3.3751e-014  8.3267e-015 2.5868e-015
0.06 4.4409e-013  4.3632e-014  6.7724e-015 3.3277e-015
0.08 4.4409e-013  5.3846e-014  8.3267e-015 4.1120e-015
Result in [11]
0.01 0.02281050 0.00236357 2.37223e-004 2.37568e-005
0.03 0.01954096  0.00201453 2.02085e-004 2.02390e-005
0.06 0.01609366 0.00165114  1.65546e-004  1.65808e-005
0.08 0.01439633 0.00147352 1.47701e-004 1.48180e-005
Table 6

The maximum error of example 3 with & = 0.01 for different values of ¢ and grid size

o N
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10° 10° 10* 10°
Proposed method
0.001 3.3307e-013 2.9421e-014 2.4425e-014 2.2536e-015
0.003 3.3307e-013 3.3751e-014 8.1046e-015 2.5876e-015
0.006 5.5511e-013 4.3521e-014  6.7724e-015 3.3278e-015
0.008 5.5511e-013 5.3735e-014 8.4377e-015 4.1122e-015
Result in [11]
0.001 0.16595983 0.02210942 0.002285665 2.29353e-004
0.003 0.10803507 0.01562216 0.00164450 1.94192e-004
0.006 0.12777968 0.02630926  0.00287019 2.89704e-004
0.008 0.10040449 0.04833890 0.00568876 5.79477e-004
Table 7

The maximum error of example 4 with & = 0.1 for different values of o and grid size

o N

102 10° 10*

Proposed method

0.01 1.6653e-015 2.2204e-016 2.2204e-016
0.03 1.6653e-015 2.2204e-016 2.2204e-016
0.06 1.1102e-015 2.2204e-016 2.2204e-016
0.08 2.7756e-016 2.2204e-016 2.2204e-016
Results in [11]

0.01 0.00575975 0.00050842 5.02478e-005
0.03 0.003932768 0.00036132  3.58384e-005
0.06 0.002702569 0.00025507 2.53643e-005
0.08 0.00224689 0.00021413 2.13134e-005
Table 8

The maximum error of example 4 with & = 0.01 for different values of 0 and grid size

o N

102 108 104 10°

Proposed method

0.001 1.3878e-015  3.6653e-016 2.0955e-016 2.0955e-016

0.003 1.0408e-015  2.2204e-016 1.3878e-016 1.3878e-016
0.006 5.4210e-016  1.3878e-016 1.3878e-016 1.3878e-016
0.008 5.8234e-017  4.8572e-017 4.8572e-017 4.8572e-017
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0.957 Numerical solution with §=0.007

( ®  Numerical solution with §=0.015
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Fig. 1. Example 1 (left 1) for £ = 0.1 and for different & of 0(&)
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Fig. 2. Example 1 (left 1) for & =0.01 and for different & of 0(&)
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1 r r r C C T C C C
‘ Numerical solution with 6=0.007
097 ®  Numerical solution with $=0.015 ||
08 L ~ Numerical solution with §=0.025 | |
0.7 §
0.6 - -
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Fig. 3. Example (2) (left 2) for & =0.01 and for different & of O(&)
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Numerical solution with 6=0.0025
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Fig. 4. Example (2) (left 2) for £ = 0.1 and for different & of 0(&)
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0.8~ | .-'

0.6 % -
Numerical solution with 6=0.007 o
Numerical solution with 6=0.015 °

02k Numerical solution with 8=0.025 ‘ i

0.4 o
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Fig. 5. Example (3) (right 1) for & =0.01 and for different & of 0(&)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Fig. 6. Example (3) (right 1) for & = 0.1 and for different & of 0(&)
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1.1. T T T T T T T T T

Numerical solution with 6=0.007

1 ®  Numerical solution with §=0.015 ?
Numerical solution with 6=0.025
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Fig. 7. Example (4) (right 2) for & =0.01 and for different & of 0(&)
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Fig. 8. Example (4) (right 2) for & =0.01 and for different & of O(&)
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