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Abstract: 

In this paper we introduce a new graph labeling called HMC labeling. We investigate HMC labeling of Path nP , Star
1,nK , Bistar

n,nB  graphs.
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1. Introduction 

One of the important area in graph theory is Graph labeling. Graph labeling is an assignment of integers to the vertices 

or edges or both subject to certain conditions. Graph labeling problems that appear in graph theory as vast applications. 

The Graph labelling problem was first introduced by Alex Rosa in 1967. Since Rosa’s article many different types of 

graph labeling problem has been defined and so far the literature survey says about the research papers above 4000 

papers.[4] They gave birth to different labeling such as graceful, harmonious, elegant, magic, antimagic, prime labeling 

etc. The labeling graphs are applied mostly in the coding theory, X-ray, Crystallography, Radar, Astronomy, 

Communication network addressing, Data base management and Cryptography etc.Here in this article a new labeling 

is introduced namely Harmonic Mean Cordial labelling(HMC). 

 

2. Preliminaries: 

The concept of cordial labeling was introduced by cahit in the year 1987.[3] 

Definition 2.1: For graph G = (V, E), Let  : ( ) 0,1f V G →  be a function. For each edge uv assign the label 

( ) ( ) ,f u f v f− is called a cordial labeling if ( ) ( ) 1f fv i v j−   and ( ) ( ) 1f fe i e j−  , where ( )fv x  and 

( )fe x  denote the number of vertices and edges labeled with  , 0,1x x  respectively. A graph which admits cordial 

labeling is called a cordial graph.  

Mean cordial labeling was introduced by Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram. [7] 

 

Definition2.2: For a graph ( , )G V E= , Let f be a function from  ( ) 0,1,2 .v G → For each edge uv of G assign the 

label 
( ) ( )

,
2

f u f v
f

+ 
 
 

is called a mean cordial labeling if ( ) ( ) 1f fv i v j−   and ( ) ( ) 1f fe i e j−  , where 

( )fv x  and ( )fe x  denote the number of vertices and edges labeled with  , 0,1,2x x  respectively. A graph which 

admits mean cordial labeling is called a mean cordial graph. 

Geometric mean cordial graph was introduced by K. Chitra Lakshmi, K. Nagarajan.[3] 

Definition2.3: For graph ( , )G V E= . Let f be a function from  ( ) 0,1,2v G → . For each edge uv of G assign the 

label ,,-𝑓(𝑢)𝑓(𝑣).., 𝑓 is called a geometric mean cordial labeling if ( ) ( ) 1f fv i v j−   and ( ) ( ) 1,f fe i e j−   

where ( )fv x  and ( )fe x  denote the number of vertices and edges labeled with  , 0,1,2x x respectively. A graph 

with a geometric mean cordial labeling is called geometric mean cordial graph. 

 

Definition 2.4:  A path graph P is a simple graph with 
P PV E 1= +  that can be drawn so that all of its vertices and 

edges lie on a single straight line. A path graph with n vertices and n - 1 edges is denoted 
nP . [5] 
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Definition 2.5: A Star is the complete bipartite graph 
1,nK  , a tree with one internal node and n leaves (but no internal 

nodes and n+1 leaves when n ≤ 1) 

 

Definition 2.6: Bistar is the graph obtained by joining the apex vertices of two copies of star
1,nK .[1] 

 

3. Main Result 

Motivated by the concept of mean cordial labeling and geometric mean cordial labeling, we introduce a new 

labeling as follows: 

 

Definition 3.1: A simple graph G = (V, E) is said to be HMC (Harmonic Mean Cordial) labeling if there exist a function 

f:  1,2V →  such that the induced edge function g:E→{1,2}defined by uv =  
2 ( ) ( )

,
( ) ( )

f u f v

f u f v+
( ), ( ) 0f u f v  for 

each edge and ( ) ( ) 1,f fv i v j−   ( ) ( ) 1g ge i e j−   where ( )fv x -denotes the number of vertices labeled with 

x, ( )ge x −  denotes the number of edges labeled with x, where  1,2x  respectively. A graph which admits a HMC 

(Harmonic Mean Cordial) labeling is called HMC (Harmonic Mean Cordial) graph. 

 

Theorem3.2: Path graph nP admits HMC labeling. 

Proof: Let G = (V, E) be a path graph where V=  1 2, , , nv v v  be the vertices of G. 
 

Define f: V → {1, 2} as follows: 

Case (i): If n is even 

0(mod 2)n  . Let n =2t, ( ) 1, 1if v i t=    

( ) 2, 1t if v i t+ =    .Then (1) (2)f fv v t= =  and (1) , (2) 1g ge t e t= = −  

Case (ii): If n is odd 

1(mod 2)n  . Let 2 1n t= + ( ) 1, 1if v i t=   ( ) 2, 1 1t if v i t+ =   +  

Then (1) , (2) 1f fv t v t= = +  and (1) , (2)g ge t e t= =  

By using the definition of HMC graph, we observe that ( ) ( ) 1f fv i v j−   and ( ) ( ) 1g ge i e j−   for all 

 , 1,2i j  and hence path graph nP  admits HMC graph.  

 

Theorem 3.3: The star  admits HMC labelling. 

Proof: Let G = (V, E) =  be the star graph where V=  be the vertices of G. Let 

 and 
 

has n+1 vertices and n edges. 

 Let v is the apex vertex of  

Define  as follows. Let 
    

 

Case (i): If n is even 

               

 Let  

Assign the labels 1,2 to each of the t  vertices respectively. 

Then  and  

Case (ii): If n is odd 

             
 

 Let  

1,nK

1,nK  1 2, , , , nv v v v

 1,(K ) , :1n iV v v i n=    1,n(K ) , :1iE v v i n=  

1,nK

1,nK

 1,n: (K ) 1,2f V → ( ) 2.f v =

0(mod 2)n 

2n t=

(1) , (2) 1f fv t v t= = + (1) (2)g ge e t= =

1(mod 2)n 

2 1n t= +
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Assign the label 1 to t + 1 vertices and the label 2 to the remaining each of t vertices respectively. Then 

 and  

From the above cases, we see that  for all  and hence f is HMC 

labeling. 

 

Theorem 3.4: The Bistar graph
n,nB  admits HMC labeling. 

Proof: Let G=(V,E)=
n,nB

 
be a Bistar graph containing two copies of 

1,nK . Let { 1 2, , , ,nu u u 1 2, , , nv v v
} 

be the 

corresponding vertices of each copy of 
1,nK  with apex vertex u and v. 

Let ,i i i ie uu e vv= =  and e uv= of bistar graph. Note that then 
n,n(B ) 2 2V n= +  and

n,n(B ) 2 1E n= + . 

Define  : 1,2f V →  as follows 

( ) 1, ( ) 2

( ) 1, 1

( ) 2, 1

i

i

f u f v

f u i n

f v i n

= =

=  

=  

 

In view of the above defined labeling pattern we have, (1) (2) 1f fv v n= = +  and (1) 1, (2)g ge n e n= + = Thus 

we proved that (1) (2) 1f fv v−   and (1) (2) 1g ge e−  . 

Hence, 
n,nB  admits a HMC graph. 

 

4. Conclusions: 

In this paper we introduced the concept of HMC (Harmonic Mean Cordial) labeling and studied the HMC labeling 

behavior of few standard graphs. The study of HMC labeling of graph obtained from standard graph using the graph 

operation shall be quite interesting and also will lead to newer results. 
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(1) (2)f fv v t= = (1) 1, (2) .g ge t e t= + =

( ) ( ) 1, ( ) ( ) 1f f g gv i v j e i e j−  −   , 1,2i j


