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Abstract: In this research paper, we have applied Homotopy Analysis Approach to the “time fractional nonlinear 

Schrodinger equation” to find its analytical periodic and solitary wave solution. Presence of convergence control 

parameter in this method guarantee the solution of time fractional differential equation in the form of rapidly 

convergent series. Obtained analytical solution has been compared and found in good agreement. This work 

demonstrates reliability and potential of HAM to study the time fractional partial differential equation. 
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1. Introduction  

Fractional calculus literature is as ancient as classical calculus. Recently, the field of Fractional differential 

equations (FDEs) has attracted considerable interest from the physical as well as mathematical perspective in 

nonlinear phenomena. The main cause of increasing attention is  due to the precise interpretation of many concepts 

in fluid mechanics, engineering, physics, and biology  which  have been characterized by fractional ordered 

nonlinear equations [1–6]. Studies of FDEs are also utilized to form innovative challenges in study of neurons, 

geology, image processing, finance and hydrology etc. 

There are many descriptions about fractional derivatives which are described in Podlubny [7] like R-L derivative, 

Caputo derivative etc. All descriptions have their own benefit but still these definitions challenge one another. 

Oldham [8] recognized that generalization of these definitions have been a topic of attention in mathematics.. 

Debnath [9] illustrated the capabilities of fractional calculus. In recent decades, Researchers have noticed 

that models of fractional order promote control theory more conveniently than the classical one. 

To find the solutions of nonlinear partial differential equations, physical science has developed a number of 

analytical methods and many efforts have been put forwarded till now. It’s not that much easy to get the exact 

solution of nonlinear differential equations consisting of a large number of various characteristics. Consequently, the 

analysis of FDEs has been hindered due to inadequacy of well defined analytical methods to work with them. Rather 

than finding their exact solution, a few researchers have been suceesful to derive their solutions in closed or explicit 

form. 

Homotopy Analysis Method (HAM) [10-14] is one of the recently discovered approaches, which is hybrid of the 

perturbation method and Homotopy, a concept in topology. It derives analytic and approximate solutions for linear 

as well as for nonlinear problems. Initial form of the HAM is explained by Liao [10] in his dissertation. He [11] 

presented an auxiliary variable 
0 0c   in the zeroth order deformation equation to modify and monitor the 

convergence region and solution rate. He [12] launched an auxiliary function ( , ) 0H x t  to extend more the zeroth 

order deformation equation. Privileges of HAM are that .it does not require discretization, small parameter, weak 

non-linearity assumptions and linear term in the equation. As related to other techniques, HAM offers an appropriate 
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path to regulate and customize the convergence area of the series solution. The utilization of HAM has been 

illustrated to a number of challenges emerging from engineering and science for all kinds of initial and boundary 

conditions represented by nonlinear equations containing derivatives of fractional and integer order [6,10–22].  

However, HAM’s applications for extracting exact or approximating solution of nonlinear FDEs have not been 

broadly demonstrated. It has been  noticed that  the dense mathematical structures [23-26] are admitted by nonlinear 

Schrödinger (NLS) equation. Therefore, it is of great significance to study whether or not the fractional form of the 

above equation preserve its mathematical characteristics, which is given below: 
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In the recent years, a great effort has been made in finding the exact solution of nonlinear differential equations to 

understand the most nonlinear physical phenomena. The fractional model of NLS equation is one of the most 

efficient universal models which describe various physical nonlinear systems. For example, NLS equation is 

appeared in study of small amplitude gravity waves on the surface of deep inviscid water. Additionally, NLSE has 

also appeared in the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere. various 

applications of NLS are: dynamics in particle accelerators [27], non-uniform dielectric media, solitary waves in 

piezoelectric semiconductors, hydrodynamics and plasma waves, nonlinear optical waves, quantum condensates 

[28-31].  

Schrödinger fractional model solved by various methods [32-33], among them, homotopy perturbation method [34-

36], Adomian decomposition method [35,37], two dimensional differential transform methods [38], fractional 

Riccati expansion method [39], differential transform method [40], variational iteration method [41]. Wang and Xu 

[42] applied integral transforms technique to answer the space time fractional Schrodinger equation. Split-step finite 

difference method is employed by Wang [43] to accomplish the nonlinear Schrödinger equations. A substantial 

work has been done by Masemola et al. [44] who envisaged conservation laws and optical solitons for generated 

nonlinear Schrödinger’s equation with detuning and linear attenuation. Recently, the fractional model of coupled 

nonlinear Schrödinger’s equation has been solved by Jacobi spectral collocation method by Bhrawy et al. [45], 

linearly implicit Conservative difference scheme by Wang et al. [46] and Kudryashov method by Eslami [47]. The 

paper focuses on to find analytical solution of TFNS equation.  

 

2. Preliminaries 

 

2.1 Caputo fractional derivative 
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2.2  R-L fractional derivative  
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2.3 R-L fractional partial derivative of order beta for the function ),( txv w.r.t. t 

This is the modification of above definition, which holds for the function of two variables and  is order of 

fractional derivative. 
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2.4 The Leibnitz rule for R-L fractional derivatives  

We know Leibnitz rule is defined for the product of two functions. Hence, below is the definition of Leibnitz rule 

for fractional derivative of the product of two functions. ),( txr and ),( txs are function of two variable such that 

they are differentiable and integrable. 
 
is order of fractional derivative. 

( ) ( ) ( )

( )
)1().1(

)(.1

,0,),(.),(),().,(
0

+−

−−
=

















= −



=



k

k

k
where

txsDtxrD
k

txstxrD

k

k

t

k

t

k

t










             (5)

 

 

3. Introduction to HAM  

Consider the system of time FDEs. 

0)],([ = tzvii                   (6) 

Where i time fractional differential operator, z and t are independent variables and ),( tzvi  are unknown 

functions. Zeroth-order deformation equation constructed by Liao by means of generalizing the traditional 

homotopy method is given by  

)],;,([),()],();,([)1( 0, iiiiiiiiii qtztzHhqtzvqtzLq  =−−                            (7) 

Where ]1,0[iq  is embedding parameter, 0h  and 0H are controlling auxiliary parameter and auxiliary 

function respectively. It is important to have freedom to choose auxiliary parameter and functions. L is linear 

fractional auxiliary operator with the following property 0)],([ =tzL i  when 0),( =tzi . );,( ii qtz are 

unknown functions and ),(0, tzvi  are initial guess of ),( tzvi . ),()0;,( 0, tzvtz ii = and ),()1;,( tzvtz ii =  

holds when 0=iq  and 1=iq  respectively. Thus, as iq varies from 0 to 1, the solution );,( ii qtz varies from the 

initial guess ),(0, tzvi to the solution ),( tzvi . Expanding );,( ii qtz in Taylor series with respect to iq , we get 
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If the auxiliary linear operator, parameter, functions and initial guess are chosen properly, then the series converges 

at 1iq = and we have  
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Differentiating equation n time w.r.t. iq  and then putting 0=iq  and dividing by !n , we get nth-order deformation 

equation. 

)(),()],(),([ 1,,1,, −− =− niniiininni vRtzHhtzvtzvL              (10) 

Where 
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4. Application of HAM on TFNS 

Equation (1) can be written in the form given below 
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And so we define the nonlinear operators as 
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After following the described process in the section 3, we find the recurrence relation for the components ),( txvn

and ),( txwn  
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 Equations (13) & (14) yields the terms of the infinite series solution of equation (1) as below: 
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4.1 Periodic wave solution 

Suppose 
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eaxw = where 121 ,, kaa and 2k are real constants. Similarly following 

the described process in the section 3, we calculated the terms ),(),,( txwtxv nn of the infinite series solution of (1) 

as follows 
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1 =−+= jkaaC jj In the same way, we compute .....3,3 wv  and so the infinite series solution 

of the Equation (1) is presented by the below equations 
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In general, this solution may not lead to closed form but if we choose 10 −=c and 1→ then Equations from 

(21)-(26) become  
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Similarly we will find the remaining terms and exact periodic wave solutions is given by the below equations. 
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These are exactly same as given by Tan et al. [48].  
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4.2 Solitary wave solution 
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Similarly the remaining terms and exact solitary wave solutions are given by the below equations. 
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The  above results obtained ,are same  as derived by using method called Hirota bilinearisation [49]. 

 

5. Conclusion 

In this paper, we explained about HAM method and applied it on time fractional NLS equation. We derived their 

exact periodic wave solution in general form and particularly found in agreement with solution by Tan et. al. Then 

we derived analytical solitary wave solution and again found in agreement with solution given by Hirota 

Bilinearisation Method. Hence, we observe that Ham can be extended to time fractional equation successfully and 

particular solution for different conditions can be obtained from general solution. 
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