Vertex Magic Labeling On $\boldsymbol{V}_{\mathbf{4}}$ for Cartesian product of two cycles

Dr. V. L.Stella Arputha Mary ${ }^{1}$, S.Kavitha ${ }^{2}$

${ }^{1}$ Assistant Professor, Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India.
${ }^{2}$ Research Scholar (Full Time), Department of Mathematics, Register Number 19212212092007 St.Mary's College (Autonomous), Thoothukudi, Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India.

Article History : Received :11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021
Abstract: Let V_{4} be an abelian group under multiplication. Let $g: E(G) \rightarrow V_{4}$. Then the vertex magic labeling on V_{4} is induced as $g^{*}: V(G) \rightarrow V_{4}$ such that $g^{*}(v)=\prod_{u} g(u v)$ where the product is taken over all edges $u v$ of G incident at v is constant. A graph is said to be V_{4} - magic if it admits a vertex magic labeling on V_{4}. In this paper, we prove that $C_{m} \times C_{n}, m \geq 3, n \geq 3$, Generalized fish graph, Double cone graph and four Leaf Clover graph are all V_{4}-magic graphs.
Keyword: Vertex magic labeling on V_{4}, V_{4}-magic graph, Four Leaf Clover Graph.
AMS subject classification (2010): 05C78

1. Introduction

For a non-trivial abelian group V_{4} under multiplication a graph G is said to be V_{4}-magic graph if there exist a labeling g of the edges of G with non-zero elements of V_{4} such that the vertex labeling g^{*} defined as $g^{*}(v)=$ $\Pi_{u} g(u v)$ taken over all edges $u v$ incident at v is a constant.

Let $V_{4}=\{i,-i, 1,-1\}$ we have proved that the Cartesian product of two graphs, Generalized fish graph, Happy graph,Four Leaf Clover Graph are all V_{4}-magic graphs.

2. Basic Definition

Definition: 2.1Cartesian Product of Two graphs

Cartesian product of two graphs G, H is a new graph $G H$ with the vertex set $V \times V$ and two vertices are adjacent in the new graph if and only if either $u=v$ and u^{\prime} is adjacent to v^{\prime} in H or $u^{\prime}=v^{\prime}$ and u is adjacent to v in G.

Definition: 2.2Generalized Fish Graph

The generalized fish graph is defined as the one point union of any even cycle with C_{3}. It is denoted by $G F(2 n, 3)$. It has $2 n+2$ vertices and $2 n+3$ edges.

Theorem: 2.3 Cartesian product of two cycles $C_{m} \times C_{n}$ is a V_{4}-magic graph with $m, n \geq 3$.

Proof:

Let $V\left(C_{m} \times C_{n}\right)=\left\{v_{j}: 1 \leq j \leq m\right\} \cup\left\{v_{j}^{\prime}: 1 \leq j \leq m\right\} \cup$
$\cup\left\{v_{j}^{\prime \prime}: 1 \leq j \leq m\right\} \cup\left\{v_{j}^{\prime \prime \prime}: 1 \leq j \leq m\right\}$
$E\left(C_{m} \times C_{n}\right)=\left\{v_{j} v_{j+1}: 1 \leq j \leq m\right\} \cup\left\{v_{j}^{\prime} v_{j+1}^{\prime}: 1 \leq j \leq m\right\} \cup$
$\cup\left\{v_{j}^{\prime \prime} v_{j+1}^{\prime \prime}: 1 \leq j \leq m\right\} \cup\left\{v_{j}^{\prime \prime \prime} v_{j+1}^{\prime \prime \prime}: 1 \leq j \leq m\right\} \cup$ $\cup\left\{v_{j} v_{j}^{\prime}: 1 \leq j \leq m\right\} \cup\left\{v_{j}^{\prime} v_{j}^{\prime \prime}: 1 \leq j \leq m\right\} \cup$ $\cup\left\{v_{j}^{\prime \prime} v_{j}^{\prime \prime \prime}: 1 \leq j \leq m\right\} \cup\left\{v_{j}^{\prime \prime \prime} v_{j}: 1 \leq j \leq m\right\}$
$\left[v_{m+1}=v_{1} ; v_{m+1}^{\prime}=v_{1}^{\prime} ; \quad v_{m+1}^{\prime \prime}=v_{1}^{\prime \prime} ; v_{m+1}^{\prime \prime \prime}=v_{1}^{\prime \prime \prime} ; v_{0}=v_{m} ; \quad v_{0}^{\prime}=v_{m}^{\prime}\right.$;
$\left.v_{0}^{\prime \prime}=v_{m}^{\prime \prime} ; v_{0}^{\prime \prime \prime}=v_{m}^{\prime \prime \prime}\right]$
Case 1:Let $m, n \geq 3$ and both are even.
Let us define $g: E\left(C_{m} \times C_{n}\right) \rightarrow\{i,-i,-1\}$ as

$$
\begin{gathered}
g\left(v_{j} v_{j+1}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j} v_{j+1}\right)=\text {-iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime} v_{j+1}^{\prime}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime} v_{j+1}^{\prime}\right)=\text {-iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime}\right)=\text {-iwhenjiseven } ; 1 \leq j \leq m
\end{gathered}
$$

$$
\begin{gathered}
g\left(v_{j}^{\prime \prime \prime} v_{j+1}^{\prime \prime \prime}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime \prime} v_{j+1}^{\prime \prime \prime}\right)=- \text { iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j} v_{j}^{\prime}\right)=-1 ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime} v_{j}^{\prime \prime}\right)=-1 ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime} v_{j}^{\prime \prime \prime}\right)=-1 ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime \prime} v_{j}\right)=-1 ; 1 \leq j \leq m
\end{gathered}
$$

Now $g^{*}: V\left(C_{m} \times C_{n}\right) \rightarrow i,-i,-1$ is given by

$$
\begin{aligned}
& g^{*}\left(v_{j}\right)=g\left(v_{j} v_{j+1}\right) * g\left(v_{j} v_{j}^{\prime}\right) * g\left(v_{j} v_{j-1}\right) * g\left(v_{j} v_{j}^{\prime \prime \prime}\right) \\
&=(i) *(-i) *(-1) *(-1) \\
&= 1 ; 1 \leq j \leq m \\
&=(-i) *(-i) *(-1) *(-1) \\
&=1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{\prime}\right)=g\left(v_{j}^{\prime} v_{j+1}^{\prime}\right) * g\left(v_{j}^{\prime} v_{j-1}^{\prime}\right) * g\left(v_{j}^{\prime} v_{j}^{\prime \prime}\right) * g\left(v_{j}^{\prime} v_{j}\right) \\
&=(i) *(-i) *(-1) *(-1) \\
&=1 ; 1 \leq j \leq m \\
& \quad g^{*}\left(v_{j}^{\prime \prime \prime}\right)=g\left(v_{j}^{\prime \prime \prime} v_{j+1}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime \prime} v_{j-1}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j-1}^{\prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j}^{\prime \prime}\right) \\
&=(i) *(-i) *(-1) *(-1) \\
&= 1 ; 1 \leq j \leq m
\end{aligned}
$$

Thus we get $g^{*}\left(v_{j}\right)=g^{*}\left(v_{j}^{\prime}\right)=g^{*}\left(v_{j}^{\prime \prime}\right)=g^{*}\left(v_{j}^{\prime \prime \prime}\right)=1 ; 1 \leq \mathrm{j} \leq \mathrm{m}$
Hence when m, n are both even we can conclude that $C_{m} \times C_{n}$, satisfy vertex magic labelling on V_{4}. And Hence its a V_{4}-magic graph.
Case 2: When both m and n are odd
Let us define $g: E\left(C_{m} \times C_{n},\right) \rightarrow\{i,-i,-1\}$ as

$$
\begin{aligned}
& g\left(v_{j} v_{j+1}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{\prime} v_{j+1}^{\prime}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime \prime}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{V} v_{j+1}^{V I}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{V} v_{j+1}^{V}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{v I I} v_{j+1}^{I I}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j} v_{j}^{\prime}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{\prime} v_{j}^{\prime \prime}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{\prime \prime} v_{j}^{\prime \prime \prime}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{\prime \prime \prime} v_{j}^{I V}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{I V} v_{j}^{V}\right)=-i ; 1 \leq j \leq m \\
& g\left(v_{j}^{V} v_{j}^{V I}\right)=-i ; 1 \leq j \leq m
\end{aligned}
$$

Now $g^{*}: V\left(C_{m} \times C_{n},\right) \rightarrow\{i,-i,-1\}$ is given by

$$
\begin{aligned}
& g^{*}\left(v_{j}\right)=g\left(v_{j} v_{j+1}\right) * g\left(v_{j} v_{j-1}\right) * g\left(v_{j} v_{j}^{\prime}\right) * g\left(v_{j} v_{j}^{V I}\right) \\
& =(-i) *(-i) *(-i) *(-i) \\
& =1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{\prime}\right)=g\left(v_{j}^{\prime} v_{j+1}^{\prime}\right) * g\left(v_{j}^{\prime} v_{j-1}^{\prime}\right) * g\left(v_{j}^{\prime} v_{j}^{\prime \prime}\right) * g\left(v_{j}^{\prime} v_{j}\right) \\
& =(-i) *(-i) *(-i) *(-i) \\
& =1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{\prime \prime}\right)=g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j-1}^{\prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j}^{\prime}\right) \\
& =(-i) *(-i) *(-i) *(-i) \\
& =1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{\prime \prime \prime}\right)=g\left(v_{j}^{\prime \prime \prime} v_{j+1}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime \prime} v_{j-1}^{\prime \prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime \prime} v_{j}^{I V}\right) * g\left(v_{j}^{\prime \prime \prime} v_{j}^{\prime \prime}\right) \\
& =(-i) *(-i) *(-i) *(-i) \\
& =1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{I V}\right)=g\left(v_{j}^{I V} v_{j+1}^{I V}\right) * g\left(v_{j}^{I V} v_{j-1}^{I V}\right) * g\left(v_{j}^{I V} v_{j}^{\prime \prime \prime}\right) * g\left(v_{j}^{I V} v_{j}^{V}\right) \\
& =(-i) *(-i) *(-i) *(-i) \\
& =1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{V}\right)=g\left(v_{j}^{V} v_{j+1}^{V}\right) * g\left(v_{j}^{V} v_{j-1}^{V}\right) * g\left(v_{j}^{V} v_{j}^{I V}\right) * g\left(v_{j}^{V} v_{j}^{V I}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=(-i) *(-i) *(-i) *(-i) \\
&= 1 ; 1 \leq j \leq m \\
& \quad g^{*}\left(v_{j}^{V I}\right)=g\left(v_{j}^{V I} v_{j+1}^{V I}\right) * g\left(v_{j}^{V I} v_{j-1}^{V I}\right) * g\left(v_{j}^{V I} v_{j}^{V}\right) * g\left(v_{j}^{V I} v_{j}\right) \\
&=(-i) *(-i) *(-i) *(-i) \\
&=1 ; 1 \leq j \leq m
\end{aligned}
$$

Hence We can conclude that $C_{m} \times C_{n}$, is a V_{4}-magic graph when both m and n are odd as it satisfies vertex magic labelling on V_{4}. We can also prove this case by labelling each vertex of $C_{m} \times C_{n}$, with i we get $g^{*}\left(v_{j}\right)=$ $1 ; 1 \leq j \leq m$ throughout the graph in each cycle.

Also we can prove this case by labelling each vertex of $C_{m} \times C_{n}$, with -1 we get $g^{*}\left(v_{j}\right)=1 ; 1 \leq j \leq m$ throughout the graph in each cycle.
Case 3: Let m be even and n be odd
Let us define $g: E\left(C_{m} \times C_{n},\right) \rightarrow\{i,-i,-1\}$ as

$$
\begin{gathered}
g\left(v_{j} v_{j+1}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j} v_{j+1}\right)=\text {-iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime} v_{j+1}^{\prime}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime} v_{j+1}^{\prime}\right)=- \text { iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime}\right)=- \text { iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j} v_{j+1}^{\prime \prime \prime}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime \prime}\right)=- \text { iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j}^{I V} v_{j+1}^{I V}\right)=\text { iwhenjisodd } ; 1 \leq j \leq m \\
g\left(v_{j}^{I V} v_{j+1}^{I V}\right)=- \text { iwhenjiseven } ; 1 \leq j \leq m \\
g\left(v_{j} v_{j}^{\prime}\right)=-1 ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime} v_{j}^{\prime \prime}\right)=-1 ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime} v_{j}^{\prime \prime \prime}\right)=-1 ; 1 \leq j \leq m \\
g\left(v_{j}^{\prime \prime \prime} v_{j}^{I V}\right)=-1 ; 1 \leq j \leq m \\
g\left(v_{j}^{I V} v_{j}\right)=-1 ; 1 \leq j \leq m
\end{gathered}
$$

Figure $1 C_{6} \times C_{4}$

Now $g^{*}: V\left(C_{m} \times C_{n},\right) \rightarrow\{i,-i,-1\}$ is given by

$$
g^{*}\left(v_{j}\right)=g\left(v_{j} v_{j+1}\right) * g\left(v_{j} v_{j-1}\right) * g\left(v_{j} v_{j}^{\prime}\right) * g\left(v_{j} v_{j}^{I V}\right)
$$

$$
=(i) *(-i) *(-1) *(-1)
$$

$$
\begin{aligned}
&= 1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{\prime}\right)=g\left(v_{j}^{\prime} v_{j+1}\right) * g\left(v_{j}^{\prime} v_{j-1}\right) * g\left(v_{j}^{\prime} v_{j}^{\prime \prime}\right) * g\left(v_{j}^{\prime} v_{j}\right) \\
&=(i) *(-i) *(-1) *(-1) \\
&=1 ; 1 \leq j \leq m \\
& g^{*}\left(v_{j}^{\prime \prime}\right)=g\left(v_{j}^{\prime \prime} v_{j+1}^{\prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j-1}^{\prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime} v_{j}^{\prime}\right) \\
&=(i) *(-i) *(-1) *(-1) \\
&=1 ; 1 \leq j \leq m \\
&= g^{*}\left(v_{j}^{\prime \prime \prime}\right)=g\left(v_{j}^{\prime \prime \prime} v_{j+1}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime \prime} v_{j-1}^{\prime \prime \prime}\right) * g\left(v_{j}^{\prime \prime \prime} v_{j}^{I V}\right) * g\left(v_{j}^{\prime \prime \prime} v_{j}^{\prime \prime}\right) \\
&= 1 ; 1 \leq j \leq(-i) *(-1) *(-1) \\
& \quad g^{*}\left(v_{j}^{I V}\right)=g\left(v_{j}^{I V} v_{j+1}^{I V}\right) * g\left(v_{j}^{I V} v_{j-1}^{I V}\right) * g\left(v_{j}^{\wedge} I V v_{j}^{\prime \prime \prime} \wedge^{\prime \prime \prime}\right) * g\left(v_{j}^{I V} v_{j}\right) \\
&=(i) *(-i) *(-1) *(-1) \\
&=1 ; 1 \leq j \leq m
\end{aligned}
$$

So we can say that $C_{m} \times C_{n}$, is a V_{4} - magic graph even when m is even and n is odd as it satisfies vertex magic labelling on V_{4}. Hence from all three cases we can conclude that the Cartesian product $C_{m} \times C_{n}$, is a V_{4} - magic graph by satisfying vertex magic labelling on V_{4}.

Case (1):

Both $m \& n$ are even ; $m=6$ and $n=4$

Figure $2 C_{5} \times C_{7}$

It is illustrated in the Figure 1
Case (2):
When both m and n are odd.
Let $m=5 ; n=7\left(C_{5} \times C_{7}\right)$
It is illustrated in the Figure 2

Figure 3: $C_{4} \times C_{5}$

Case (3) :

When m is even and n is odd.
Let $m=4 ; n=5$
It is illustrated in the Figure 3

Theorem: 2.4

Generalized fish graph $\operatorname{GF}(n, 3)$ is a V_{4}-magic graph for all $n \geq 4$ and n is even.

Proof:

Let $n \geq 4$ and n is even.
Let $V(G F(n, 3))=\left\{v_{j}: 1 \leq j \leq n+2\right\}$ and

$$
\begin{gathered}
E(G F(n, 3))=\left\{v_{j} v_{j+1}: 1 \leq j \leq n \cup v_{\frac{n}{2}+1} v^{\prime}, v_{\frac{n}{2}+1} v^{2}, v^{\prime} v^{2}\right\} \\
{\left[v_{n+1}=v_{1} ; v_{0}=v_{n}\right]}
\end{gathered}
$$

Let us define $g: E(G F(n, 3)) \rightarrow\{i,-i,-1\}$ as

$$
\begin{gathered}
g\left(v_{j} v_{j+1}\right)=\text { iwhenjisodd } ; 1 \leq j \leq n \\
g\left(v_{j} v_{j+1}\right)=\text {-iwhenjiseven } ; 1 \leq j \leq n
\end{gathered}
$$

and $g\left(v_{\frac{n}{2}+1} v^{\prime}\right)=g\left(v_{\frac{n}{2}+1} v^{2}\right)=g\left(v^{\prime} v^{2}\right)=-1$
Now $g^{*}: V((G F(n, 3))) \rightarrow\{i,-i,-1\}$ is given by

$$
g^{*}\left(v_{j}\right)=g\left(v_{j} v_{j+1}\right) * g\left(v_{j-1} v_{j}\right) ; 1 \leq j \leq \frac{n}{2} ; \frac{n}{2} \leq j \leq n
$$

$=1$

$$
=(i) *(-i)
$$

$$
\begin{aligned}
& \quad g^{*}\left(v_{\frac{n}{2}+1}^{n}\right)=g\left(v_{\frac{n}{2}} v_{\frac{n}{2}+1}\right) * g\left(v_{\frac{n}{2}+1} v_{\frac{n}{2}+2}\right) * g\left(v_{\frac{n}{2}+1} v^{\prime}\right) * g\left(v_{\frac{n}{2}+1} v^{2}\right) \\
& =(-i) *(i) *(-1) *(-1) \\
& =1 \\
& g^{*}\left(v^{\prime}\right)=g\left(v_{\frac{n}{2}+1} v^{\prime}\right) * g\left(v^{\prime} v^{2}\right)=1 \\
& g^{*}\left(v^{2}\right)=g\left(v_{\frac{n}{2}+1} v^{2}\right) * g\left(v^{\prime} v^{2}\right)=1
\end{aligned}
$$

So throughout $G F(n, 3)$ each vertex is equal to the value 1 . Hence it admits vertex magic labelling on V_{4}.
Thus Generalised Fish graph $\operatorname{GF}(n, 3)$ is said to be a V_{4} - magic graph.
Example: 2.5 GF $(8,3)$

Figure 4 GF $(8,3)$

Four Leaf Clover Graph

Four leaf Clover graph is formed by the combination of a cycle C_{8} and a path $P_{2 n+1}$ such that the end vertices of the path are attached to a vertex of the cycle.

Figure 5

Theorem: 2.6

Four Leaf Clover (FLC) graph is a V_{4}-magic graph.

Proof:

Let $V(F L C)=\left\{v_{j}: 1 \leq j \leq 8\right\} \cup\left\{u_{i}: 1 \leq i \leq 2 n+1, n \geq 2, n \in N\right\}$ and

$$
E(F L C)=\left\{v_{j} v_{j+1}: 1 \leq j \leq 8\right\} \cup\left\{v_{8} u_{1}, v_{8} u_{2 n}+1\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq 2 n 1, n \geq 2\right\}
$$

$$
\left[v_{0}=v_{8} ; v_{9}=v_{1} ; u_{2 n+2}=v_{8}\right]
$$

Let us define $g: E(F L C) \rightarrow\{1,-i,-1\}$ as

$$
\begin{gathered}
g\left(v_{j} v_{j+1}\right)=i, \text { whenjisodd } \\
g\left(v_{j} v_{j+1}\right)=-i, \text { whenjiseven } \\
g\left(v_{8} u_{1}\right)=-i \\
g\left(v_{8} u_{2 n+1}\right)=i, n \geq 2 \\
g\left(u_{i} u_{i+1}\right)=i, \text { wheniisodd, } i \leq 2 \mathrm{n}+1, n \geq 2 \\
g\left(u_{i} u_{i+1}\right)=-i, \text { wheniiseven }
\end{gathered}
$$

Now $g^{*}: V(F L C) \rightarrow\{i,-i,-1\}$ is given by

$$
\begin{gathered}
g^{*}\left(v_{j}\right)=g\left(v_{j} v_{j+1}\right) * g\left(v_{j-1} v_{j}\right) ; 1 \leq j<8 \\
=(i) *(-i)=1 \\
g^{*}\left(v_{8}\right)=g\left(v_{7} v_{8}\right) * g\left(v_{8} u_{1}\right) * g\left(v_{8} u_{2 n+1}\right) * g\left(v_{8} v_{1}\right) \\
=(i) *(-i) *(i) *(-i)
\end{gathered}
$$

$$
=1
$$

$$
g^{*}\left(u_{i}\right)=g\left(u_{i} u_{i+1}\right) * g\left(u_{i-1} u_{-} i\right) ; 2 \leq i<2 n
$$

$$
=(-i) *(i)=1
$$

$g^{*}\left(u_{1}\right)=g\left(u_{1} v_{8}\right) * g\left(u_{1} u_{2}\right)$

$$
=(-i) *(i)=1
$$

$g^{*}\left(u_{2 n+1}\right)=g\left(u_{2 n} u_{2 n+1}\right) * g\left(u_{2 n+1} v_{8}\right)$
$=(-i) *(i)=1$
Thus $g^{*}\left(v_{j}\right)=1 ; 1 \leq j<8$

$$
g^{*}\left(u_{i}\right)=1 ; 1 \leq i \leq 2 n+1
$$

Therefore four Leaf Clover graph is a V_{4} - magic graph as it satisfies vertex magic labeling on V_{4}.
Example: FLC

Figure 5
Theorem: 2.6 Double Cone $D C_{n} ; n \geq 3$ is a V_{4}-magic graph.
Proof:Let $n \geq 3$
Case (i): n is even
Let $V\left(D C_{n}\right)=\left\{v_{j}: 1 \leq j \leq n\right\} \cup\left\{v^{1}, v^{2}\right\}$ and

$$
\begin{gathered}
E\left(D C_{n}\right)=\left\{v_{j} v_{j+1}: 1 \leq j \leq n\right\} \cup\left\{v^{1} v_{j}: 1 \leq j \leq n\right\} \cup\left\{v^{2} v_{j}: 1 \leq j \leq n\right\} \\
{\left[v_{n+1}=v_{1} ; v_{j-1}=v_{n}\right]}
\end{gathered}
$$

Let us define $g: E\left(D C_{n}\right) \rightarrow\{i,-i,-1\}$ as

$$
\begin{gathered}
g\left(v_{j} v_{j+1}\right)=i, \quad \text { whenjisodd }, 1 \leq j \leq n \\
g\left(v_{j} v_{j+1}\right)=-i, \quad \text { whenjiseven } 1 \leq j \leq n \\
g\left(v_{j} v^{\prime}\right)=i, \quad 1 \leq j \leq n \\
g\left(v_{j} v^{2}\right)=-i, \quad 1 \leq j \leq n
\end{gathered}
$$

Now $g^{*}: V\left(D C_{n}\right) \rightarrow\{i,-i,-1\}$ is given by

$$
\begin{aligned}
& \quad g^{*}\left(v_{j}\right)=g\left(v_{j} v_{j+1}\right) * g\left(v_{j-1} v_{j}\right) * g\left(v_{j} v_{j}^{\prime}\right) * g\left(v_{j} v^{2}\right) \\
& =(i) *(-i) *(i) *(-i) \\
& =1 ; 1 \leq n \quad g^{*}\left(v^{\prime}\right)=g\left(v_{1} v^{\prime}\right) * g\left(v_{2} v^{\prime}\right) * g\left(v_{3} v^{\prime}\right) * \cdots * g\left(v_{n} v^{\prime}\right) \\
& \quad=(i) * \cdots *(i)
\end{aligned}
$$

$$
\begin{aligned}
& =1 \\
& =(-i) *(-i) * \cdots *(-i) \\
& =1
\end{aligned}
$$

Example: DC_8

Figure 6: $\boldsymbol{D C} \boldsymbol{C}_{8}$

Case (ii): n is odd
Let $V\left(D C_{n}\right)=\left\{v_{j}: 1 \leq j \leq n\right\} \cup\left\{v^{1}, v^{2}\right\}$ and

$$
\begin{gathered}
E\left(D C_{n}\right)=\left\{v_{j} v_{j+1}: 1 \leq j \leq n\right\} \cup\left\{v^{1} v_{j}: 1 \leq j \leq n\right\} \cup\left\{v^{2} v_{j}: 1 \leq j \leq n\right\} \\
{\left[v_{n+1}=v_{1} ; v_{j-1}=v_{n}\right]}
\end{gathered}
$$

Let us define $g: E\left(D C_{n}\right) \rightarrow\{i,-i,-1\}$ as

$$
\begin{aligned}
& g\left(v_{j} v_{j+1}\right)=i ; 1 \leq j \leq n \\
& g\left(v_{j} v^{1}\right)=-1 ; 1 \leq j \leq n \\
& g\left(v_{j} v^{2}\right)=-1 ; 1 \leq j \leq n
\end{aligned}
$$

Now $g^{*}: V\left(D C_{n}\right) \rightarrow\{i,-i,-1\}$ is given by

$$
g^{*}\left(v_{j}\right)=g\left(v_{j} v_{j+1}\right) * g\left(v_{j-1} v_{j}\right) * g\left(v_{j} v^{1}\right) * g\left(v_{j} v_{j}^{2}\right)
$$

$$
\begin{aligned}
& =(i) *(i) *(-1) *(-1) \\
& =-1 ; 1 \leq j \leq n
\end{aligned}
$$

$$
\begin{aligned}
& g^{*}\left(v^{1}\right)=g\left(v_{1} v^{1}\right) * g\left(v_{2} v^{1}\right) * \cdots * g\left(v_{n} v^{1}\right) \\
&=(-1) *(-1) * \cdots *(-1) *(-1) \\
&=-1 \\
& g^{*}\left(v^{2}\right)=g\left(v_{1} v^{2}\right) * g\left(v_{2} v^{2}\right) * \cdots * g\left(v_{n} v^{2}\right) \\
&=(-1) *(-1) * \cdots *(-1) *(-1) \\
&=-1
\end{aligned}
$$

So when n is even, we get the constant value 1 at each vertex and when n is odd, we get the constant value -1 at each vertex.
Thus $D C_{n}$ is a V_{4}-magic graph as it admits vertex magic labeling on V_{4}.

Example: DC_9

Figure 9: $\boldsymbol{D} \boldsymbol{C}_{9}$

Reference

1. S.Amutha and K.M.Kathiresan, The existence and construction of certain types of labeling for graphs, Ph.D.Thesis,Madurai Kamaraj University,2006.
2. Osama Rashad El-Gendy, "On BOI-Algebras", International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 9, Issue 2, pp, 13-28
3. J.A.Galian, A dynamic survey graph labeling, Electronic Journal of Combinatorics, 17(2010),DS6.
4. A. Sangeetha Devi \& M.M.Shanmugapriya, Efficient Dominator Coloring in Graphs, International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 6, Issue 3, pp, 1-8
5. K. Radha \& N. Kumaravel, "The Degree of an Edge in Cartesian Product and Composition of Two Fuzzy Graphs", International Journal of Applied Mathematics \& Statistical Sciences (JAMSS), Vol. 2, Issue 2, pp, 65-78
6. S. V. Manemaran \& R. Nagaraja, "A Group Action on Picture Fuzzy Soft G-Modules", International Journal of Applied Mathematics \& Statistical Sciences (IJAMSS), Vol. 8, Issue 5, pp; 31-48
7. Rajendra Kunwar, "Functions and Graphs: Basic Techniques of Sketching the Graph and Some Real Life Applications", IMPACT: International Journal of Research in Humanities, Arts and Literature (IMPACT: IJRHAL), Vol. 7, Issue 5, pp, 21-42
8. S. Sudha \& G. M. Raja, "Equitable Coloring of Prisms and the Generalized Petersen Graphs", IMPACT: International Journal of Research in Engineering \& Technology (IMPACT: IJRET), Vol. 2, Issue 2, pp, 105-112
9. Gary Chartrand and Ping Zhang, : Introduction to Graph Theory, (2006) Tata McGraw-Hill
