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Abstract: Let 𝑉4 be an abelian group under multiplication. Let 𝑔: 𝐸(𝐺) → 𝑉4. Then the vertex magic labeling on 

𝑉4  is induced as 𝑔∗: 𝑉(𝐺) → 𝑉4 such that 𝑔∗(𝑣) = ∏ 𝑔(𝑢𝑣)𝑢  where the product is taken over all edges 𝑢𝑣 of 𝐺 

incident at 𝑣 is constant. A graph is said to be 𝑉4 - magic if it admits a vertex magic labeling on 𝑉4. In this paper, 

we prove that 𝐶𝑚 × 𝐶𝑛,𝑚 ≥  3, 𝑛 ≥  3, Generalized fish graph, Double cone graph and four Leaf Clover graph 

are all 𝑉4 -magic graphs. 
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1. Introduction 

For a non-trivial abelian group 𝑉4  under multiplication a graph 𝐺 is said to be 𝑉4 -magic graph if there exist a 

labeling 𝑔 of the edges of 𝐺 with non-zero elements of 𝑉4  such that the vertex labeling 𝑔∗ defined as 𝑔∗(𝑣) =
∏ 𝑔(𝑢𝑣)𝑢  taken over all edges 𝑢𝑣 incident at 𝑣 is a constant. 

 

Let 𝑉4 = {𝑖, −𝑖, 1, −1} we have proved that the Cartesian product of two graphs,Generalized fish graph, Happy 

graph,Four Leaf Clover Graph are all  

𝑉4 -magic graphs. 

 

2. Basic Definition 

Definition: 2.1Cartesian Product of Two graphs 

Cartesian product of two graphs 𝐺, 𝐻 is a new graph 𝐺𝐻 with the vertex set 𝑉 × 𝑉 and two vertices are adjacent 

in the new graph if and only if either 𝑢 = 𝑣and 𝑢′ is adjacent to 𝑣′ in 𝐻 or 𝑢′ = 𝑣′ and u is adjacent to 𝑣 in 𝐺. 

 

Definition: 2.2Generalized Fish Graph 

The generalized fish graph is defined as the one point union of any even cycle with 𝐶3. It is denoted by 

𝐺𝐹(2𝑛, 3). It has 2𝑛 + 2 vertices and 2𝑛 + 3 edges. 

 

Theorem: 2.3 Cartesian product of two cycles 𝐶𝑚 × 𝐶𝑛 is a  𝑉4-magic graph with 𝑚, 𝑛 ≥  3. 

Proof: 

Let 𝑉(𝐶𝑚 × 𝐶𝑛) = {𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑣𝑗
′ ∶  1 ≤ 𝑗 ≤ 𝑚} ∪ 

∪ {𝑣𝑗
′′ ∶ 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑣𝑗

′′′: 1 ≤ 𝑗 ≤ 𝑚} 

𝐸(𝐶𝑚 × 𝐶𝑛) = {𝑣𝑗𝑣𝑗+1: 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑣𝑗
′𝑣𝑗+1

′ : 1 ≤ 𝑗 ≤ 𝑚} ∪ 

∪ {𝑣𝑗
′′𝑣𝑗+1

′′ ∶ 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑣𝑗
′′′𝑣𝑗+1

′′′ ∶ 1 ≤ 𝑗 ≤ 𝑚} ∪ 

∪ {𝑣𝑗𝑣𝑗
′ ∶ 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑣𝑗

′𝑣𝑗
′′  ∶ 1 ≤ 𝑗 ≤ 𝑚} ∪ 

∪ {𝑣𝑗
′′𝑣𝑗

′′′  ∶ 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑣𝑗
′′′𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑚} 

 [𝑣𝑚+1 = 𝑣1;  𝑣𝑚+1
′ = 𝑣1

′ ;   𝑣𝑚+1
′′ = 𝑣1

′′;  𝑣𝑚+1
′′′ = 𝑣1

′′′; 𝑣0 = 𝑣𝑚;   𝑣0
′ = 𝑣𝑚

′ ;  
𝑣0

′′ = 𝑣𝑚
′′ ; 𝑣0

′′′ = 𝑣𝑚
′′′] 

Case 1:Let 𝑚, 𝑛 ≥  3 and both are even. 

Let us define 𝑔: 𝐸(𝐶𝑚 × 𝐶𝑛) → {𝑖, −𝑖, −1} as  

𝑔(𝑣𝑗𝑣𝑗+1) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗𝑣𝑗+1) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗+1

’ ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗+1

’ ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗+1

′′ ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗+1

′′ ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 
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𝑔(𝑣𝑗
′′′𝑣𝑗+1

′′′ ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′′𝑣𝑗+1

′′′   ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗𝑣𝑗
′ ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗

′′ ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗

′′′‘) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′′𝑣𝑗  ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

Now  𝑔∗: 𝑉(𝐶𝑚 × 𝐶𝑛) → 𝑖, −𝑖, −1 is given by 

𝑔∗(𝑣𝑗) =  𝑔(𝑣𝑗𝑣𝑗+1) ∗ 𝑔(𝑣𝑗𝑣𝑗
′) ∗ 𝑔(𝑣𝑗𝑣𝑗−1) ∗ 𝑔(𝑣𝑗𝑣𝑗

′′′) 

                                     =   (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
                                      =  1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗(𝑣𝑗
′) =  𝑔(𝑣𝑗

′𝑣𝑗+1
’ ) ∗ 𝑔(𝑣𝑗

′𝑣𝑗−1
′ ) ∗ 𝑔(𝑣𝑗

′𝑣𝑗
′′) ∗ 𝑔(𝑣𝑗

′𝑣𝑗) 

                                     = (−𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 

                                     =  1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗(𝑣𝑗
′′) =  𝑔(𝑣𝑗

′′𝑣𝑗+1
′′ ) ∗ 𝑔(𝑣𝑗

′′𝑣𝑗−1
′′ ) ∗ 𝑔(𝑣𝑗

′′𝑣𝑗
′′′) ∗ 𝑔(𝑣𝑗

′′𝑣𝑗
′) 

                                  =   (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
                                  = 1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗ (𝑣𝑗
′′′) =  𝑔(𝑣𝑗

′′′𝑣𝑗+1
′′′  ) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗−1
′′′  ) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗  ) ∗ 𝑔(𝑣𝑗
′′′𝑣𝑗

′′)  

                                =  (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
                                 =  1 ;  1 ≤ 𝑗 ≤ 𝑚 
Thus we get  𝑔∗ (𝑣𝑗  ) = 𝑔∗ (𝑣𝑗

′ ) = 𝑔∗ (𝑣𝑗
′′) = 𝑔∗  (𝑣𝑗

′′′)= 1; 1≤ j≤ m                       

Hence when 𝑚, 𝑛 are both even we can conclude that 𝐶𝑚 × 𝐶𝑛, satisfy vertex magic labelling on 𝑉4. And Hence 

its a 𝑉4-magic graph. 

Case 2:  When both  𝑚 and 𝑛 are odd 

Let us define 𝑔: 𝐸(𝐶𝑚 × 𝐶𝑛 , )  →  {𝑖, −𝑖, −1} as  

𝑔(𝑣𝑗𝑣𝑗+1 ) = −𝑖 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗+1

′  ) = −𝑖 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗+1

′′   ) = −𝑖 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗+1

′′′   ) = −𝑖 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝐼𝑉𝑣𝑗+1

𝐼𝑉   ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝑉𝑣𝑗+1

𝑉 ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝑉𝐼𝑣𝑗+1

𝑉𝐼   ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗𝑣𝑗
′ ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗

′′ ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗

′′′) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′′𝑣𝑗

𝐼𝑉  ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝐼𝑉𝑣𝑗

𝑉  ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝑉𝑣𝑗

𝑉𝐼  ) = −𝑖  ;  1 ≤ 𝑗 ≤ 𝑚 

Now 𝑔∗: 𝑉(𝐶𝑚 × 𝐶𝑛, )  →  {𝑖, −𝑖, −1} is given by 

𝑔∗ (𝑣𝑗) =  𝑔(𝑣𝑗𝑣𝑗+1) ∗ 𝑔(𝑣𝑗𝑣𝑗−1 ) ∗ 𝑔(𝑣𝑗𝑣𝑗
′ ) ∗ 𝑔(𝑣𝑗𝑣𝑗

𝑉𝐼  ) 

                                 =  (−𝑖) ∗ (−𝑖) ∗ (−𝑖) ∗ (−𝑖) 
                                 =  1 ;  1 ≤  𝑗 ≤  𝑚 

𝑔∗ (𝑣𝑗
′) =  𝑔(𝑣𝑗

′𝑣𝑗+1
′ ) ∗ 𝑔(𝑣𝑗

′𝑣𝑗−1
′ ) ∗ 𝑔(𝑣𝑗

′𝑣𝑗
′′) ∗ 𝑔(𝑣𝑗

′𝑣𝑗) 

                                    =  (−𝑖) ∗ (−𝑖) ∗ (−𝑖) ∗ (−𝑖) 
                                   =  1 ;  1 ≤  𝑗 ≤  𝑚 

𝑔∗(𝑣𝑗
′′) = 𝑔(𝑣𝑗

′′𝑣𝑗+1
′′  ) ∗ 𝑔(𝑣𝑗

′′
𝑣𝑗−1

′′  ) ∗ 𝑔(𝑣𝑗
′′𝑣𝑗

′′′) ∗ 𝑔(𝑣𝑗
′′𝑣𝑗

′)                                  

=   (−𝑖) ∗ (−𝑖) ∗ (−𝑖) ∗ (−𝑖) 
=  1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗(𝑣𝑗
′′′) =  𝑔(𝑣𝑗

′′′𝑣𝑗+1
′′′  ) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗−1
′′′′  ) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗
𝐼𝑉  ) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗
′′)  

                             =  (−𝑖) ∗ (−𝑖) ∗ (−𝑖) ∗ (−𝑖) 
                             =  1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗ (𝑣𝑗
𝐼𝑉  ) =  𝑔(𝑣𝑗

𝐼𝑉𝑣𝑗+1
𝐼𝑉  ) ∗ 𝑔(𝑣𝑗

𝐼𝑉𝑣𝑗−1
𝐼𝑉  ) ∗ 𝑔(𝑣𝑗

𝐼𝑉𝑣𝑗
′′′ ) ∗ 𝑔(𝑣𝑗

𝐼𝑉𝑣𝑗
𝑉)  

                              =   (−𝑖) ∗ (−𝑖) ∗ (−𝑖) ∗ (−𝑖) 
                              =  1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗ (𝑣𝑗
𝑉   ) =  𝑔(𝑣𝑗

𝑉𝑣𝑗+1
𝑉    ) ∗ 𝑔(𝑣𝑗

𝑉𝑣𝑗−1
𝑉   ) ∗ 𝑔(𝑣𝑗

𝑉𝑣𝑗
𝐼𝑉   ) ∗ 𝑔(𝑣𝑗

𝑉𝑣𝑗
𝑉𝐼) 
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                        =   (−𝑖) ∗ (−𝑖) ∗ (−𝑖) ∗ (−𝑖) 
                         =  1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗ (𝑣𝑗
𝑉𝐼) =  𝑔(𝑣𝑗

𝑉𝐼𝑣𝑗+1
𝑉𝐼  ) ∗ 𝑔(𝑣𝑗

𝑉𝐼𝑣𝑗−1
𝑉𝐼  ) ∗ 𝑔(𝑣𝑗

𝑉𝐼𝑣𝑗
𝑉  ) ∗ 𝑔(𝑣𝑗

𝑉𝐼𝑣𝑗) 

                           =   (−𝑖) ∗ (−𝑖) ∗ (−𝑖) ∗ (−𝑖) 
                =  1 ;  1 ≤ 𝑗 ≤ 𝑚 

Hence We can conclude that 𝐶𝑚 × 𝐶𝑛, is a 𝑉4-magic graph when both m and n are odd as it satisfies vertex 

magic labelling on 𝑉4. We can also prove this case by labelling each vertex of 𝐶𝑚 × 𝐶𝑛, with i we get 𝑔∗ (𝑣𝑗) =

1; 1 ≤ 𝑗 ≤ 𝑚 throughout the graph in each cycle. 

 

Also we can prove this case by labelling each vertex of 𝐶𝑚 × 𝐶𝑛, with -1 we get 𝑔∗ (𝑣𝑗) = 1; 1 ≤ 𝑗 ≤ 𝑚 

throughout the graph in each cycle. 

Case 3:  Let 𝑚 be even and 𝑛 be odd 

Let us define 𝑔: 𝐸(𝐶𝑚 × 𝐶𝑛 , )  →  {𝑖, −𝑖, −1} as  

𝑔(𝑣𝑗𝑣𝑗+1 ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗𝑣𝑗+1 ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗+1

′ ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗+1

′ ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗+1

′ ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗+1

′′ ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗𝑣𝑗+1
′′′ ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗𝑣𝑗+1
′′′   ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝐼𝑉𝑣𝑗+1

𝐼𝑉 ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝐼𝑉𝑣𝑗+1

𝐼𝑉   ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗𝑣𝑗
′ ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′𝑣𝑗

′′ ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′𝑣𝑗

′′′ ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
′′′𝑣𝑗

𝐼𝑉  ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔(𝑣𝑗
𝐼𝑉𝑣𝑗  ) = −1  ;  1 ≤ 𝑗 ≤ 𝑚 

 
Figure 1𝑪𝟔 × 𝑪𝟒 

 

    Now  𝑔∗: 𝑉(𝐶𝑚 × 𝐶𝑛, ) →  {𝑖, −𝑖, −1} is given by 

𝑔∗ (𝑣𝑗  ) =  𝑔(𝑣𝑗𝑣𝑗+1  ) ∗ 𝑔(𝑣𝑗𝑣𝑗−1  ) ∗ 𝑔(𝑣𝑗𝑣𝑗
′  ) ∗ 𝑔(𝑣𝑗𝑣𝑗

𝐼𝑉  )   

                             =   (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
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                            = 1 ;  1 ≤ 𝑗 ≤ 𝑚 
𝑔∗ (𝑣𝑗

′ ) =  𝑔(𝑣𝑗
′𝑣𝑗+1 ) ∗ 𝑔(𝑣𝑗

′𝑣𝑗−1 ) ∗ 𝑔(𝑣𝑗
′𝑣𝑗

′′ ) ∗ 𝑔(𝑣𝑗
′𝑣𝑗  )   

                                =  (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
                                = 1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗ (𝑣𝑗
′′ ) =  𝑔(𝑣𝑗

′′𝑣𝑗+1
′′  ) ∗ 𝑔(𝑣𝑗

′′𝑣𝑗−1
′′  ) ∗ 𝑔(𝑣𝑗

′′𝑣𝑗
′′′ ) ∗ 𝑔(𝑣𝑗

′′𝑣𝑗
′ )   

                                =  (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
                                = 1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗  (𝑣𝑗
′′′ ) =  𝑔(𝑣𝑗

′′′𝑣𝑗+1
′′′  ) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗−1
′′′  ) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗
𝐼𝑉) ∗ 𝑔(𝑣𝑗

′′′𝑣𝑗
′′ )  

                             =   (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
                             = 1 ;  1 ≤ 𝑗 ≤ 𝑚 

𝑔∗ (𝑣𝑗
𝐼𝑉  ) =  𝑔(𝑣𝑗

𝐼𝑉𝑣𝑗+1
𝐼𝑉  ) ∗ 𝑔(𝑣𝑗

𝐼𝑉𝑣𝑗−1
𝐼𝑉  ) ∗ 𝑔(𝑣𝑗  ^𝐼𝑉𝑣𝑗

′′′ ^’‘‘ ) ∗ 𝑔(𝑣𝑗
𝐼𝑉𝑣𝑗)  

                       =   (𝑖) ∗ (−𝑖) ∗ (−1) ∗ (−1) 
                       = 1 ;  1 ≤ 𝑗 ≤ 𝑚 
 

So we can say that 𝐶𝑚 × 𝐶𝑛,  is a 𝑉4- magic graph even when m is even and n is odd as it satisfies vertex magic 

labelling on 𝑉4. Hence from all three cases we can conclude that the Cartesian product 𝐶𝑚 × 𝐶𝑛, is a 𝑉4- magic 

graph by satisfying vertex magic labelling on 𝑉4. 

 

Case (1): 

Both 𝑚&𝑛 are even ; m=6 and n=4 

 
Figure 2𝑪𝟓   ×  𝑪𝟕 

 

It is illustrated in the Figure 1 

Case (2): 

  When both 𝑚 and 𝑛 are odd. 

Let 𝑚 = 5;  𝑛 = 7  (𝐶5 × 𝐶7) 
It is illustrated in the Figure 2 
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Figure 3: 𝑪𝟒   ×  𝑪𝟓 

 

Case (3) : 

 When m is even and n is odd. 

Let m=4; n=5 

 It is illustrated in the Figure 3 

  

Theorem: 2.4 

 Generalized fish graph 𝐺𝐹(𝑛, 3)  is a 𝑉4-magic graph for all 𝑛 ≥  4 and n is even. 

Proof: 

Let 𝑛 ≥  4 and n is even. 

Let 𝑉(𝐺𝐹(𝑛, 3)) = {𝑣𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑛 + 2}  and  

𝐸(𝐺𝐹(𝑛, 3)) = {𝑣𝑗𝑣𝑗+1   ∶  1 ≤ 𝑗 ≤ 𝑛 ∪ 𝑣𝑛

2
+1𝑣′, 𝑣𝑛

2
+1𝑣2, 𝑣′𝑣2} 

[𝑣𝑛+1 = 𝑣1;  𝑣0 = 𝑣𝑛] 
 

Let us define 𝑔: 𝐸(𝐺𝐹(𝑛, 3))  →  {𝑖, −𝑖, −1} as 

𝑔(𝑣𝑗𝑣𝑗+1 ) = 𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ;  1 ≤ 𝑗 ≤ 𝑛 

𝑔(𝑣𝑗𝑣𝑗+1 ) = −𝑖𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 ;  1 ≤ 𝑗 ≤ 𝑛 

 and 𝑔(𝑣𝑛

2
+1𝑣′) = 𝑔(𝑣𝑛

2
+1𝑣2) = 𝑔(𝑣′𝑣2) = −1 

 Now 𝑔∗: 𝑉((𝐺𝐹(𝑛, 3)))  →  {𝑖, −𝑖, −1} is given by 

𝑔∗( 𝑣𝑗) = 𝑔(𝑣𝑗𝑣𝑗+1 ) ∗ 𝑔(𝑣𝑗−1𝑣𝑗);  1 ≤ 𝑗 ≤
𝑛

2
;
𝑛

2
≤ 𝑗 ≤ 𝑛 

                               =  (𝑖) ∗ (−𝑖) 
 = 1 

𝑔∗(𝑣𝑛

2
+1) =  𝑔(𝑣𝑛

2
𝑣𝑛

2
+1)  ∗ 𝑔(𝑣𝑛

2
+1𝑣𝑛

2
+2) ∗ 𝑔(𝑣𝑛

2
+1𝑣 ’) ∗ 𝑔(𝑣𝑛

2
+1𝑣2) 

                             =  (−𝑖) ∗ (𝑖) ∗ (−1) ∗ (−1) 
                            = 1 

𝑔∗(𝑣 ’) =  𝑔(𝑣𝑛

2
+1𝑣 ’) ∗ 𝑔(𝑣 ’𝑣2) = 1 

𝑔∗(𝑣2) =  𝑔(𝑣𝑛

2
+1𝑣2) ∗ 𝑔(𝑣′𝑣2) = 1 

So throughout 𝐺𝐹(𝑛, 3) each vertex is equal to the value 1. Hence it admits vertex magic labelling on 𝑉4. 

Thus Generalised Fish graph 𝐺𝐹(𝑛, 3) is said to be a 𝑉4- magic graph. 

 

Example: 2.5 𝐺𝐹(8,3) 
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Figure 4 𝑮𝑭(𝟖, 𝟑) 

 

Four Leaf Clover Graph 

Four leaf Clover graph is formed by the combination of a cycle 𝐶8 and a path 𝑃2𝑛+1 such that the end vertices of 

the path are attached to a vertex of the cycle. 

 
Figure 5 

 

Theorem: 2.6 

Four Leaf Clover (FLC) graph is a 𝑉4-magic graph. 

Proof: 

Let 𝑉(𝐹𝐿𝐶) = {𝑣𝑗 ∶  1 ≤ 𝑗 ≤  8} ∪ {𝑢𝑖: 1 ≤ 𝑖 ≤  2𝑛 + 1, 𝑛 ≥  2, 𝑛 ∈ 𝑁} and 

𝐸(𝐹𝐿𝐶) = {𝑣𝑗𝑣𝑗+1  ∶  1 ≤ 𝑗 ≤  8} ∪ {𝑣8𝑢1, 𝑣8𝑢2𝑛 + 1} ∪ {𝑢𝑖𝑢𝑖+1  ∶ 1 ≤ 𝑖 ≤  2𝑛1, 𝑛 ≥  2} 

[𝑣0 = 𝑣8  ;  𝑣9 = 𝑣1 ;  𝑢2𝑛+2 =  𝑣8] 
Let us define 𝑔: 𝐸(𝐹𝐿𝐶) → {1, −𝑖, −1} as 

𝑔(𝑣𝑗𝑣𝑗+1 ) = 𝑖, 𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 

𝑔( 𝑣𝑗𝑣𝑗+1 ) = −𝑖, 𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛 

𝑔(𝑣8𝑢1) = −𝑖 
𝑔(𝑣8𝑢2𝑛+1) = 𝑖, 𝑛 ≥  2 

𝑔(𝑢𝑖𝑢𝑖+1) = 𝑖, 𝑤ℎ𝑒𝑛𝑖𝑖𝑠𝑜𝑑𝑑, 𝑖≤ 2n+1,𝑛 ≥  2 
𝑔(𝑢𝑖𝑢𝑖+1) = −𝑖, 𝑤ℎ𝑒𝑛𝑖𝑖𝑠𝑒𝑣𝑒𝑛 

Now 𝑔∗: 𝑉(𝐹𝐿𝐶)  →  {𝑖, −𝑖, −1} is given by 

𝑔∗( 𝑣𝑗) = 𝑔(𝑣𝑗𝑣𝑗+1 ) ∗ 𝑔(𝑣𝑗−1𝑣𝑗); 1 ≤ 𝑗 < 8 

                                             =  (𝑖) ∗ (−𝑖) = 1 
𝑔∗(𝑣8) = 𝑔(𝑣7𝑣8 ) ∗ 𝑔(𝑣8𝑢1 ) ∗ 𝑔(𝑣8𝑢2𝑛+1 ) ∗ 𝑔(𝑣8𝑣1 ) 

                                 = (𝑖) ∗ (−𝑖) ∗ (𝑖) ∗ (−𝑖) 



Turkish Journal of Computer and Mathematics Education          Vol.12 No. 1 (2021), 710-723 

  Research Article 

246 

                                =  1 
𝑔∗(𝑢𝑖) = 𝑔(𝑢𝑖𝑢𝑖+1) ∗ 𝑔(𝑢𝑖−1𝑢_𝑖 ); 2 ≤ 𝑖 <  2𝑛 

                                         =  (−𝑖) ∗ (𝑖) = 1 
𝑔∗(𝑢1) = 𝑔(𝑢1𝑣8) ∗ 𝑔(𝑢1𝑢2) 
                                         =  (−𝑖) ∗ (𝑖) = 1 
𝑔∗(𝑢2𝑛+1) = 𝑔(𝑢2𝑛𝑢2𝑛+1) ∗ 𝑔(𝑢2𝑛+1𝑣8) 
                                           =  (−𝑖) ∗ (𝑖) = 1 
Thus 𝑔∗( 𝑣𝑗) = 1 ; 1 ≤ 𝑗 < 8 

𝑔∗(𝑢𝑖) = 1 ; 1 ≤ 𝑖 ≤  2𝑛 + 1 
Therefore four Leaf Clover graph is a 𝑉4- magic graph as it satisfies vertex magic labeling on 𝑉4. 

     

Example: FLC 

 
Figure 5 

Theorem: 2.6 Double Cone 𝐷𝐶𝑛;  𝑛 ≥  3 is a 𝑉4-magic graph. 

Proof:Let 𝑛 ≥  3 
Case (i): 𝑛 is even 

Let 𝑉(𝐷𝐶𝑛) = {𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑣1, 𝑣2} and 

𝐸(𝐷𝐶𝑛) =  {𝑣𝑗𝑣𝑗+1 ∶ 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑣1𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑣2𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑛} 

[𝑣𝑛+1 = 𝑣1;  𝑣𝑗−1 = 𝑣𝑛] 

Let us define 𝑔: 𝐸(𝐷𝐶𝑛)  →  {𝑖, −𝑖, −1} as 

𝑔(𝑣𝑗𝑣𝑗+1) = 𝑖, 𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑜𝑑𝑑 ,1 ≤ 𝑗 ≤ 𝑛 

𝑔(𝑣𝑗𝑣𝑗+1  ) = −𝑖, 𝑤ℎ𝑒𝑛𝑗𝑖𝑠𝑒𝑣𝑒𝑛, 1 ≤ 𝑗 ≤ 𝑛 

𝑔(𝑣𝑗𝑣′) = 𝑖,   1 ≤ 𝑗 ≤ 𝑛 

𝑔(𝑣𝑗𝑣2 ) = −𝑖, 1 ≤ 𝑗 ≤ 𝑛 

Now 𝑔∗: 𝑉(𝐷𝐶𝑛)  →  {𝑖, −𝑖, −1} is given by 

𝑔∗( 𝑣𝑗) = 𝑔(𝑣𝑗𝑣𝑗+1 ) ∗ 𝑔(𝑣𝑗−1𝑣𝑗  ) ∗ 𝑔(𝑣𝑗𝑣𝑗
′) ∗ 𝑔(𝑣𝑗𝑣2)   

              = (𝑖) ∗ (−𝑖) ∗ (𝑖) ∗ (−𝑖) 
             = 1; 1 ≤  𝑗 ≤  𝑛  

𝑔∗(𝑣′) =  𝑔(𝑣1𝑣′) ∗ 𝑔(𝑣2𝑣′) ∗ 𝑔(𝑣3𝑣′) ∗ ⋯ ∗ 𝑔(𝑣𝑛𝑣′)  
                              =  (𝑖) ∗ ⋯ ∗ (𝑖)                                        
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                              = 1 
𝑔∗(𝑣2) = 𝑔(𝑣1𝑣2) ∗ 𝑔(𝑣2𝑣2) ∗ 𝑔(𝑣3𝑣2) ∗ ⋯ ∗ 𝑔(𝑣𝑛𝑣2) 

                              =  (−𝑖) ∗ (−𝑖) ∗ ⋯ ∗ (−𝑖)                                        
                               = 1 

 

Example: DC_8 

 
Figure 6:   𝑫𝑪𝟖 

 

Case (ii): 𝑛is odd 

Let 𝑉(𝐷𝐶𝑛) = {𝑣𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑣1, 𝑣2} and  

𝐸(𝐷𝐶𝑛) = {𝑣𝑗𝑣𝑗+1  ∶ 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑣1𝑣𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑣2𝑣𝑗 ∶  1 ≤ 𝑗 ≤ 𝑛} 

[𝑣𝑛+1 = 𝑣1 ;  𝑣𝑗−1  = 𝑣𝑛] 

Let us define 𝑔: 𝐸(𝐷𝐶𝑛)  →  {𝑖, −𝑖, −1} as  

𝑔(𝑣𝑗𝑣𝑗+1) = 𝑖 ;  1 ≤ 𝑗 ≤ 𝑛 

𝑔(𝑣𝑗𝑣1) = −1 ;  1 ≤ 𝑗 ≤ 𝑛 

𝑔(𝑣𝑗𝑣2) = −1 ;  1 ≤ 𝑗 ≤ 𝑛 

Now 𝑔∗: 𝑉(𝐷𝐶𝑛)  →  {𝑖, −𝑖, −1} is given by 

𝑔∗ (𝑣𝑗) =  𝑔(𝑣𝑗𝑣𝑗+1) ∗ 𝑔(𝑣𝑗−1𝑣𝑗) ∗ 𝑔(𝑣𝑗𝑣1) ∗ 𝑔(𝑣𝑗𝑣𝑗
2) 

                                 =   (𝑖) ∗ (𝑖) ∗ (−1) ∗ (−1) 
                                =  −1 ;  1 ≤  𝑗 ≤  𝑛 
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𝑔∗(𝑣1) =  𝑔(𝑣1𝑣1) ∗ 𝑔(𝑣2𝑣1) ∗ ⋯ ∗ 𝑔(𝑣𝑛𝑣1) 
                               =   (−1) ∗ (−1) ∗ ⋯ ∗ (−1) ∗ (−1) 
                               =  −1  
𝑔∗(𝑣2) =  𝑔(𝑣1𝑣2) ∗ 𝑔(𝑣2𝑣2) ∗ ⋯ ∗ 𝑔(𝑣𝑛𝑣2) 
                               =   (−1) ∗ (−1) ∗ ⋯ ∗ (−1) ∗ (−1) 
                               =  −1  
So when 𝑛 is even, we get the constant value 1 at each vertex and when n is odd, we get the constant value -1 at 

each vertex.  

Thus 𝐷𝐶𝑛is a 𝑉4-magic graph as it admits vertex magic labeling on 𝑉4. 

 

 

Example: DC_9 

 
Figure 9:  𝑫𝑪𝟗 
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