Research Article

Vertex Magic Labeling On V₄ for Cartesian product of two cycles

Dr. V. L.Stella Arputha Mary¹, S.Kavitha²

¹Assistant Professor, Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India.

²Research Scholar (Full Time), Department of Mathematics, Register Number 19212212092007 St.Mary's College (Autonomous), Thoothukudi, Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India.

Article History : Received :11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: Let V_4 be an abelian group under multiplication. Let $g: E(G) \to V_4$. Then the vertex magic labeling on V_4 is induced as $g^*: V(G) \to V_4$ such that $g^*(v) = \prod_u g(uv)$ where the product is taken over all edges uv of G incident at v is constant. A graph is said to be V_4 - magic if it admits a vertex magic labeling on V_4 . In this paper, we prove that $C_m \times C_n, m \ge 3, n \ge 3$, Generalized fish graph, Double cone graph and four Leaf Clover graph are all V_4 -magic graphs.

Keyword: Vertex magic labeling on V_4 , V_4 -magic graph, Four Leaf Clover Graph. **AMS subject classification (2010):** 05C78

1. Introduction

For a non-trivial abelian group V_4 under multiplication a graph *G* is said to be V_4 -magic graph if there exist a labeling *g* of the edges of *G* with non-zero elements of V_4 such that the vertex labeling g^* defined as $g^*(v) = \prod_u g(uv)$ taken over all edges uv incident at v is a constant.

Let $V_4 = \{i, -i, 1, -1\}$ we have proved that the Cartesian product of two graphs, Generalized fish graph, Happy graph, Four Leaf Clover Graph are all V_4 -magic graphs

 V_4 -magic graphs.

2. Basic Definition

Definition: 2.1Cartesian Product of Two graphs

Cartesian product of two graphs G, *H* is a new graph *GH* with the vertex set $V \times V$ and two vertices are adjacent in the new graph if and only if either u = v and u' is adjacent to v' in *H* or u' = v' and u is adjacent to v in *G*.

Definition: 2.2Generalized Fish Graph

The generalized fish graph is defined as the one point union of any even cycle with C_3 . It is denoted by GF(2n, 3). It has 2n + 2 vertices and 2n + 3 edges.

Theorem: 2.3 Cartesian product of two cycles $C_m \times C_n$ is a V_4 -magic graph with $m, n \ge 3$. **Proof:**

Let
$$V(C_m \times C_n) = \{v_j: 1 \le j \le m\} \cup \{v'_j: 1 \le j \le m\} \cup \bigcup \{v''_j: 1 \le j \le m\} \cup \{v''_j: 1 \le j \le m\}$$

 $\cup \{v''_j: 1 \le j \le m\} \cup \{v''_j: 1 \le j \le m\} \cup \{v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_{j+1}: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_{j+1}: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \{v''_j: v''_j: 1 \le j \le m\} \cup \{v''_j: v''_j: 1 \le j \le m\} \cup \bigcup \{v''_j: v''_j: 1 \le j \le m\} \cup \{v''_j: 1 \le j \le m\}$

Let us define $g: E(C_m \times C_n) \to \{i, -i, -1\}$ as

 $\begin{array}{l} g(v_{j}v_{j+1}) = iwhenjisodd \; ; \; 1 \leq j \leq m \\ g(v_{j}v_{j+1}) = -iwhenjiseven \; ; \; 1 \leq j \leq m \\ g(v_{j}'v_{j+1}') = iwhenjisodd \; ; \; 1 \leq j \leq m \\ g(v_{j}'v_{j+1}') = -iwhenjiseven \; ; \; 1 \leq j \leq m \\ g(v_{j}'v_{j+1}'') = iwhenjisodd \; ; \; 1 \leq j \leq m \\ g(v_{j}''v_{j+1}'') = -iwhenjiseven \; ; \; 1 \leq j \leq m \end{array}$

Research Article

 $g(v_i^{\prime\prime\prime}v_{i+1}^{\prime\prime\prime}) = iwhen jisodd ; 1 \le j \le m$ $g(v_i^{\prime\prime\prime}v_{j+1}^{\prime\prime\prime}) = -iwhenjiseven; 1 \le j \le m$ $g(v_iv_i') = -1$; $1 \le j \le m$ $g(v_j'v_j'') = -1$; $1 \le j \le m$ $g(v_j^{\prime\prime}v_j^{\prime\prime\prime\prime})=-1$; $1\leq j\leq m$ $g(v_i'''v_i) = -1 ; 1 \le j \le m$ Now $g^*: V(C_m \times C_n) \to i, -i, -1$ is given by $g^{*}(v_{j}) = g(v_{j}v_{j+1}) * g(v_{j}v_{j}') * g(v_{j}v_{j-1}) * g(v_{j}v_{j}''')$ = (*i*) * (-*i*) * (-1) * (-1) $= 1; 1 \le j \le m$ $g^{*}(v_{j}') = g(v_{j}'v_{j+1}') * g(v_{j}'v_{j-1}') * g(v_{j}'v_{j}'') * g(v_{j}'v_{j})$ = (-i) * (-i) * (-1) * (-1) $= 1; 1 \le j \le m$ $g^{*}(v_{j}^{\prime\prime}) = g(v_{j}^{\prime\prime}v_{j+1}^{\prime\prime}) * g(v_{j}^{\prime\prime}v_{j-1}^{\prime\prime}) * g(v_{j}^{\prime\prime}v_{j}^{\prime\prime\prime}) * g(v_{j}^{\prime\prime}v_{j}^{\prime\prime})$ = (i) * (-i) * (-1) * (-1) $= 1; 1 \le j \le m$ $g^*(v_j''') = g(v_j'''v_{j+1}'') * g(v_j'''v_{j-1}'') * g(v_j'''v_j) * g(v_j'''v_j'')$ = (i) * (-i) * (-1) * (-1) $= 1; 1 \le j \le m$ Thus we get $g^*(v_j) = g^*(v_j') = g^*(v_j'') = g^*(v_j'') = 1; 1 \le j \le m$

Hence when m, n are both even we can conclude that $C_m \times C_n$, satisfy vertex magic labelling on V_4 . And Hence its a V_4 -magic graph.

Case 2: When both m and n are odd

Let us define
$$g: E(C_m \times C_n,) \to \{i, -i, -1\}$$
 as
 $g(v_j^{\nu}v_{j+1}^{\nu}) = -i; 1 \le j \le m$
 $g(v_j^{\nu}v_{j}^{\nu}) = -i; 1 \le j \le m$
 $g(v_j^{\nu}v_{j+1}^{\nu}) = -i; 1 \le j \le m$
 $g(v_j^{\nu}v_{j+1}^{\nu}) = -i; 1 \le j \le m$
 $g(v_j^{\nu}v_{j+1}^{\nu}) = -i; 1 \le j \le m$
 $g(v_j^{\nu}) = g(v_jv_{j+1}) * g(v_jv_{j-1}) * g(v_jv_{j}^{\nu}) * g(v_jv_{j}^{\nu})$
 $= (-i) * (-i) * (-i) * (-i)$
 $= 1; 1 \le j \le m$
 $g^*(v_j^{\nu}) = g(v_j^{\nu}v_{j+1}^{\nu}) * g(v_j^{\nu}v_{j-1}^{\nu}) * g(v_j^{\nu}v_{j}^{\nu}) * g(v_j^{\nu}v_{j})$
 $= (-i) * (-i) * (-i) * (-i)$
 $= 1; 1 \le j \le m$
 $g^*(v_j^{\nu}) = g(v_j^{\nu}v_{j+1}^{\nu}) * g(v_j^{\nu}v_{j-1}^{\nu}) * g(v_j^{\nu}v_{j}^{\nu}) * g(v_j^{\nu}v_{j}^{\nu})$
 $= (-i) * (-i) * (-i) * (-i)$
 $= 1; 1 \le j \le m$
 $g^*(v_j^{\nu}) = g(v_j^{\nu}v_{j+1}^{\nu}) * g(v_j^{\nu}v_{j-1}^{\nu}) * g(v_j^{\nu}v_{j}^{\nu}) * g(v_j^{\nu}v_{j}^{\nu})$
 $= (-i) * (-i) * (-i) * (-i)$
 $= 1; 1 \le j \le m$
 $g^*(v_j^{\nu}) = g(v_j^{\nu}v_{j+1}^{\nu}) * g(v_j^{\nu}v_{j-1}^{\nu}) * g(v_j^{\nu}v_{j}^{\nu}) * g(v_j^{\nu}v_{j}^{\nu})$

$$= (-i) * (-i) * (-i) * (-i) = 1; 1 \le j \le m g^* (v_j^{VI}) = g(v_j^{VI}v_{j+1}^{VI}) * g(v_j^{VI}v_{j-1}^{VI}) * g(v_j^{VI}v_j^{V}) * g(v_j^{VI}v_j) = (-i) * (-i) * (-i) * (-i) = 1; 1 \le j \le m$$

Hence We can conclude that $C_m \times C_n$, is a V_4 -magic graph when both m and n are odd as it satisfies vertex magic labelling on V_4 . We can also prove this case by labelling each vertex of $C_m \times C_n$, with i we get $g^*(v_j) = 1$; $1 \le j \le m$ throughout the graph in each cycle.

Also we can prove this case by labelling each vertex of $C_m \times C_n$, with -1 we get $g^*(v_j) = 1$; $1 \le j \le m$ throughout the graph in each cycle.

Case 3: Let m be even and n be odd

Let us define $g: E(C_m \times C_n,) \rightarrow \{i, -i, -1\}$ as $g(v_j v_{j+1}) = iwhenjisodd ; 1 \le j \le m$ $g(v_j v_{j+1}) = -iwhenjiseven ; 1 \le j \le m$ $g(v_j' v_{j+1}') = iwhenjisodd ; 1 \le j \le m$ $g(v_j' v_{j+1}') = iwhenjisodd ; 1 \le j \le m$ $g(v_j' v_{j+1}') = -iwhenjiseven ; 1 \le j \le m$ $g(v_j v_{j+1}'') = -iwhenjiseven ; 1 \le j \le m$ $g(v_j v_{j+1}'') = -iwhenjiseven ; 1 \le j \le m$ $g(v_j v_{j+1}'') = -iwhenjiseven ; 1 \le j \le m$ $g(v_j^{IV} v_{j+1}^{IV}) = -iwhenjiseven ; 1 \le j \le m$ $g(v_j^{IV} v_{j+1}^{IV}) = -iwhenjiseven ; 1 \le j \le m$ $g(v_j^{V} v_{j+1}^{IV}) = -iwhenjiseven ; 1 \le j \le m$ $g(v_j^{V} v_{j+1}^{V'}) = -1 ; 1 \le j \le m$ $g(v_j^{V'} v_{j}^{V'}) = -1 ; 1 \le j \le m$ $g(v_j^{V''} v_{j}^{V'}) = -1 ; 1 \le j \le m$ $g(v_j^{V''} v_{j}^{V}) = -1 ; 1 \le j \le m$

Figure $1C_6 \times C_4$

Now
$$g^*: V(C_m \times C_n,) \to \{i, -i, -1\}$$
 is given by
 $g^*(v_j) = g(v_j v_{j+1}) * g(v_j v_{j-1}) * g(v_j v'_j) * g(v_j v'_j)$
 $= (i) * (-i) * (-1) * (-1)$

$$= 1; 1 \le j \le m g^*(v'_j) = g(v'_jv_{j+1}) * g(v'_jv_{j-1}) * g(v'_jv''_j) * g(v'_jv_j) = (i) * (-i) * (-1) * (-1) = 1; 1 \le j \le m g^*(v''_j) = g(v''_jv''_{j+1}) * g(v''_jv''_{j-1}) * g(v''_jv''_j) * g(v''_jv'_j) = (i) * (-i) * (-1) * (-1) = 1; 1 \le j \le m g^*(v''_j) = g(v''_jv''_{j+1}) * g(v''_jv''_{j-1}) * g(v''_jv''_j) * g(v''_jv''_j) = (i) * (-i) * (-1) * (-1) = 1; 1 \le j \le m g^*(v''_j) = g(v''_jv''_{j+1}) * g(v''_jv''_{j-1}) * g(v'_j \wedge v''_j) * g(v''_jv''_j) = (i) * (-i) * (-1) * (-1) = 1; 1 \le j \le m$$

So we can say that $C_m \times C_n$, is a V_4 - magic graph even when m is even and n is odd as it satisfies vertex magic labelling on V_4 . Hence from all three cases we can conclude that the Cartesian product $C_m \times C_n$, is a V_4 - magic graph by satisfying vertex magic labelling on V_4 .

Case (1):

Both *m*&*n* are even ; m=6 and n=4

Figure $2C_5 \times C_7$

It is illustrated in the Figure 1 Case (2):

When both *m* and *n* are odd. Let m = 5; n = 7 ($C_5 \times C_7$) It is illustrated in the Figure 2

Figure 3: $C_4 \times C_5$

Case (3) : When m is even and n is odd. Let m=4; n=5 It is illustrated in the Figure 3

Theorem: 2.4

Generalized fish graph GF(n, 3) is a V_4 -magic graph for all $n \ge 4$ and n is even. **Proof:** Let $n \ge 4$ and n is even. Let $V(GF(n, 3)) = \{v_j : 1 \le j \le n + 2\}$ and $E(GF(n, 3)) = \{v_j v_{j+1} : 1 \le j \le n \cup v_{\frac{n}{2}+1}v', v_{\frac{n}{2}+1}v^2, v'v^2\}$ $[v_{n+1} = v_1; v_0 = v_n]$ Let us define $g: E(GF(n, 3)) \rightarrow \{i, -i, -1\}$ as $g(v_j v_{j+1}) = iwhen j is odd ; 1 \le j \le n$ $g(v_j v_{j+1}) = -iwhen j is over i; 1 \le j \le n$ and $g(v_{\frac{n}{2}+1}v') = g(v_{\frac{n}{2}+1}v^2) = g(v'v^2) = -1$ Now $g^*: V((GF(n, 3))) \rightarrow \{i, -i, -1\}$ is given by $g^*(v_j) = g(v_j v_{j+1}) * g(v_{j-1}v_j); 1 \le j \le \frac{n}{2}; \frac{n}{2} \le j \le n$ = (i) * (-i) = 1 $g^*(v_{\frac{n}{2}+1}) = g(v_{\frac{n}{2}}v_{\frac{n}{2}+1}) * g(v_{\frac{n}{2}+1}v_{\frac{n}{2}+2}) * g(v_{\frac{n}{2}+1}v') * g(v_{\frac{n}{2}+1}v^2)$ = (-i) * (i) * (-1) * (-1)= 1

$$g^{*}(v') = g(v_{\frac{n}{2}+1}v') * g(v'v^{2}) = 1$$

$$g^{*}(v^{2}) = g(v_{\frac{n}{2}+1}v^{2}) * g(v'v^{2}) = 1$$

So throughout GF(n, 3) each vertex is equal to the value 1. Hence it admits vertex magic labelling on V_4 . Thus Generalised Fish graph GF(n, 3) is said to be a V_4 - magic graph.

Example: 2.5 GF(8,3)

Four Leaf Clover Graph

Four leaf Clover graph is formed by the combination of a cycle C_8 and a path P_{2n+1} such that the end vertices of the path are attached to a vertex of the cycle.

Theorem: 2.6

Four Leaf Clover (FLC) graph is a V_4 -magic graph. **Proof:** Let $V(FLC) = \{v_i : 1 \le j \le 8\} \cup \{u_i : 1 \le i \le 2n + 1, n \ge 2, n \in N\}$ and $E(FLC) = \{v_j v_{j+1} : 1 \le j \le 8\} \cup \{v_8 u_1, v_8 u_{2n} + 1\} \cup \{u_i u_{i+1} : 1 \le i \le 2n1, n \ge 2\}$ $[v_0 = v_8 ; v_9 = v_1 ; u_{2n+2} = v_8]$ Let us define $g: E(FLC) \rightarrow \{1, -i, -1\}$ as $g(v_i v_{i+1}) = i$, when jisodd $g(v_i v_{i+1}) = -i$, when jis even $g(v_8u_1) = -i$ $g(v_8 u_{2n+1}) = i, n \ge 2$ $g(u_i u_{i+1}) = i$, when its odd, $i \le 2n+1, n \ge 2$ $g(u_i u_{i+1}) = -i$, when is even Now $g^*: V(FLC) \rightarrow \{i, -i, -1\}$ is given by $g^*(v_j) = g(v_j v_{j+1}) * g(v_{j-1} v_j); 1 \le j < 8$ = (i) * (-i) = 1 $g^*(v_8) = g(v_7v_8) * g(v_8u_1) * g(v_8u_{2n+1}) * g(v_8v_1)$ = (i) * (-i) * (i) * (-i)

$$= 1$$

$$g^{*}(u_{i}) = g(u_{i}u_{i+1}) * g(u_{i-1}u_{i}); 2 \le i < 2n$$

$$= (-i) * (i) = 1$$

$$g^{*}(u_{1}) = g(u_{1}v_{8}) * g(u_{1}u_{2})$$

$$= (-i) * (i) = 1$$

$$g^{*}(u_{2n+1}) = g(u_{2n}u_{2n+1}) * g(u_{2n+1}v_{8})$$

$$= (-i) * (i) = 1$$
Thus $g^{*}(v_{j}) = 1; 1 \le j < 8$

$$g^{*}(u_{i}) = 1; 1 \le i \le 2n + 1$$

Therefore four Leaf Clover graph is a V_4 - magic graph as it satisfies vertex magic labeling on V_4 .

Example: FLC

Theorem: 2.6 Double Cone DC_n ; $n \ge 3$ is a V_4 -magic graph. **Proof:**Let $n \ge 3$ Case (i): n is even Let $V(DC_n) = \{v_j : 1 \le j \le n\} \cup \{v^1, v^2\}$ and $E(DC_n) = \{v_j v_{j+1} : 1 \le j \le n\} \cup \{v^1 v_j : 1 \le j \le n\} \cup \{v^2 v_j : 1 \le j \le n\}$ $[v_{n+1} = v_1; v_{j-1} = v_n]$ Let us define $g: E(DC_n) \rightarrow \{i, -i, -1\}$ as $g(v_j v_{j+1}) = i$, when jisodd $1 \le j \le n$ $g(v_j v_{j+1}) = -i$, when jis even, $1 \le j \le n$ $g(v_iv') = i, \ 1 \le j \le n$ $g(v_i v^2) = -i,$ $1 \le j \le n$ Now $g^*: V(DC_n) \rightarrow \{i, -i, -1\}$ is given by $g^{*}(v_{j}) = g(v_{j}v_{j+1}) * g(v_{j-1}v_{j}) * g(v_{j}v_{j}') * g(v_{j}v^{2})$ = (i) * (-i) * (i) * (-i) $=1; 1 \leq j \leq n$ $g^{*}(v') = g(v_{1}v') * g(v_{2}v') * g(v_{3}v') * \dots * g(v_{n}v')$ $= (i) * \cdots * (i)$

$$= 1$$

$$g^{*}(v^{2}) = g(v_{1}v^{2}) * g(v_{2}v^{2}) * g(v_{3}v^{2}) * \dots * g(v_{n}v^{2})$$

$$= (-i) * (-i) * \dots * (-i)$$

$$= 1$$

Example: DC_8

Figure 6: DC₈

$$\begin{aligned} \text{Case (ii): nis odd} \\ \text{Let } V(DC_n) &= \left\{ v_j : 1 \le j \le n \right\} \cup \{v^1, v^2\} \text{ and} \\ &= \left\{ v_j v_{j+1} : 1 \le j \le n \right\} \cup \left\{ v^1 v_j : 1 \le j \le n \right\} \cup \left\{ v^2 v_j : 1 \le j \le n \right\} \\ &= \left[v_{n+1} = v_1 ; v_{j-1} = v_n \right] \end{aligned}$$

$$\begin{aligned} \text{Let us define } g: E(DC_n) \to \{i, -i, -1\} \text{ as} \\ &= g(v_j v_{j+1}) = i ; 1 \le j \le n \\ &= g(v_j v^1) = -1 ; 1 \le j \le n \\ &= g(v_j v^2) = -1 ; 1 \le j \le n \end{aligned}$$

$$\begin{aligned} \text{Now } g^*: V(DC_n) \to \{i, -i, -1\} \text{ is given by} \\ &= g^*(v_j) = g(v_j v_{j+1}) * g(v_{j-1} v_j) * g(v_j v^1) * g(v_j v_j^2) \\ &= (i) * (i) * (-1) * (-1) \\ &= -1 ; 1 \le j \le n \end{aligned}$$

$$g^{*}(v^{1}) = g(v_{1}v^{1}) * g(v_{2}v^{1}) * \dots * g(v_{n}v^{1})$$

$$= (-1) * (-1) * \dots * (-1) * (-1)$$

$$= -1$$

$$g^{*}(v^{2}) = g(v_{1}v^{2}) * g(v_{2}v^{2}) * \dots * g(v_{n}v^{2})$$

$$= (-1) * (-1) * \dots * (-1) * (-1)$$

$$= -1$$

So when n is even, we get the constant value 1 at each vertex and when n is odd, we get the constant value -1 at each vertex.

Thus DC_n is a V_4 -magic graph as it admits vertex magic labeling on V_4 .

Example: DC_9

Figure 9: DC₉

Reference

- 1. S.Amutha and K.M.Kathiresan, The existence and construction of certain types of labeling for graphs, Ph.D.Thesis,Madurai Kamaraj University,2006.
- 2. Osama Rashad El-Gendy, "On BOI-Algebras", International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 9, Issue 2, pp, 13-28
- 3. J.A.Galian, A dynamic survey graph labeling, Electronic Journal of Combinatorics, 17(2010),DS6.
- 4. A. Sangeetha Devi & M.M.Shanmugapriya, Efficient Dominator Coloring in Graphs, International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 6, Issue 3, pp, 1-8
- K. Radha & N. Kumaravel, "The Degree of an Edge in Cartesian Product and Composition of Two Fuzzy Graphs", International Journal of Applied Mathematics & Statistical Sciences (JAMSS), Vol. 2, Issue 2, pp, 65-78

Research Article

- 6. S. V. Manemaran & R. Nagaraja, "A Group Action on Picture Fuzzy Soft G-Modules", International Journal of Applied Mathematics & Statistical Sciences (IJAMSS), Vol. 8, Issue 5, pp; 31–48
- 7. Rajendra Kunwar, "Functions and Graphs: Basic Techniques of Sketching the Graph and Some Real Life Applications", IMPACT: International Journal of Research in Humanities, Arts and Literature (IMPACT: IJRHAL), Vol. 7, Issue 5, pp, 21-42
- 8. S. Sudha & G. M. Raja, "Equitable Coloring of Prisms and the Generalized Petersen Graphs", IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET), Vol. 2, Issue 2, pp, 105-112
- 9. Gary Chartrand and Ping Zhang, : Introduction to Graph Theory, (2006) Tata McGraw-Hill