Intelligent and Deep Learning Collaborative method for E-Learning Educational Platform using TensorFlow

Manikandan. S¹, Dhanalakshmi. P², Priya. S³, Mary Odilya Teena. A⁴,

¹Associate Professor, Department of Information Technology, E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu, India (Corresponding author) (profmaninvp@gmail.com)
 ²Associate Professor, Department Computer Science and Systems Engineering, Sree Vidyanikethan Engineering College, A.Rangampet, Andhra Pradesh, India (dhanalakshmi.p@vidyanikethan.edu)
 ³Assistant Professor, Department of Computer Science and Engineering, SRM Institute of Science and Technology, Tamil Nadu, India
 (priyas3@srmist.edu.in)
 ⁴Assistant Professor, PG Department of Computer Applications, ST. Joseph's College of Arts & Science (Autonomous), Cuddalore, Tamil Nadu, India
 (teena16121979@gmail.com)

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Abstract: Nowadays, online learning is platforms are played important role for all the communities. Sitting one place accessing whole world and share their contents through internet media such as webinars, social media, etc. In this paper, we use deep learning method to analyse E-learning platforms using Google TensorFlow. In this model has processing natural language data, convolution neural network and recurrent neural network models. We have identified the clustering of E-learning platforms using content wise, domain wise and selection wise in which we can easily apply association rule mining for identifying prioritization. Those who are accessing the E-learning platforms can be collected and apply Apriori algorithm is used for clustering. We used semantic method for combination of cluster and association rule finding score. In this approach we give prediction result for which platform are used more useful of learning community and gives comparative study of various learning systems. The result is evaluated by using TensorFlow and compares the performance.

Keywords: E-Learning platforms, Intelligent System, Deep Learning, TensorFlow, Association, Clustering

1. Introduction

Current scenario online based learning is one of the important tools to access the resource. Instead conventional or traditional method this method has more efficient and ease of use. The power of internet is played vital role in this scenario. The deep learning approaches are used in E-commerce domain for customer reviews, recommendation systems for purchasing products and thereof. The usage of internet and online based learning are increasing rapidly[1]. More of data and dataset is used today and extracting logs are big challenging task. Collaborative learning approach is used for request feed and collecting large dataset modelling [2].

The comparison of user preference and dynamic model is used for filtering content and compare the performance [3][4]. The recommendation system is useful from reading contents and hybrid model for verifying all limitations [5]. The online educational resource are revolting the world such as Massive open online courses like Coursera, Edx, Udemy, NPTEL ,etc. The learners can easily find the resources and their learning credentials. Some of the courses are allowed to transfer their credit to regular academic courses [6].

Currently the education system has emerging research area and different models are suggested for learning activities. The use of various recommendation systems is available for learning by online, preferences, acquiring skills and self interest [7]. The suggestion model is created for our proposed system based on courses, recommendation and preferences. In this paper, we describes following sections, section 2 describes about related works, section 3 deals about proposed model and their recommendations, section 4 explains implementations and section 5 gives conclusion and results.

2. Related works

Apriori based association rule mining is applied for developing recommendation for monitoring content and quality factor. Tewari et al, the content based filtering method is used for analysing contents and

collaborative modelling feature prediction. The recommendation system involves data integrity, scalability and recommendation modelling. This approach provides the result of content filtering using association rules [8].

The enablement of social media platforms is rolling the world. Single day the huge volume of data can be used in the medium of internet across world. The public opinion is collected by courses, outcomes, learning platforms and management [9]. The use of resources and medium are two important factors while affecting E-learning system by Manikandan et al. Previous case studies are said that support vector machines, machine approaches and Bayesian models are used for analyzing online platforms [10].

In recent years, the study of various researches reviews need of new method to analyze the online contents and learning system [11]. The combination of data analytics, intelligent systems and natural language processing models are implemented in single learning models. Google provides all feature enabled platform for analysing platforms using TensorFlow. Deep learning model is proposed for analyzing E-learning platforms using content, courses and outcome wise [12][13].

3. Proposed Model

The number of persons using online courses and learning platforms is increased rapidly. The availability and volume of data usages are heavy and unique method is needed to analyse the dataset. From the learners point, the effective decision making principles are required for getting information about courses and their assessment. Our proposed method provides based on recommendations and needs we design following recommendation models and shown in figure 1.

Figure 1: Proposed recommendation model

The following inputs questionnaires are considered for implementing our proposed model,

 Table 1. Set questionaries for implementing our proposed model

- a. What is the major effect for after applying clustering method for covering all input requests?
- b. Why the association rule mining is need of recommendation model?
- c. While applying clustering what are the attributes is needed for settling learners perspective?
- d. What is effect after applying rule mining and clustering?
- e. Whether sequential access is needed for recommending user inputs and learners?
- f. How the prediction model is useful for combining both models?

In this section, we used covolutional neural network mode for configuring input dataset. TensorFlow is used for analysing pattern by using following dataset. The 5,00,000 input logs are taken into account (Google Content API) and set cluster size as 10,000 per 1 count model. From the normalized vector is calculated as follows,

 V_i ' = (V_i - V_i min) / (V_i max - V_i min) where as V_i - input vector of given dataset model, and V'_i - normalized vector.

Video Words is used for calculating contents or words in given E-learning contents. For example 4000 words is available means is clustered and apply convolution technique for modelling and clustering.

The neural network is applied for converting support vector model inputs to regional specific dataset. The support vector classifier is used for find region specific clusters and fined the configurations of each proposed models. The trained data is applied for sigmoid activation process.

Based on input cluster groups we created one dimensional convolutional network model and shown in figure 2. In this case 12 kernels and 1x3 matrix model is used. The pooling of each parameter size is fixed as 3x3 index medium. So we can generated three dimensional data model using above index terms.

Figure 2 Convolutional neural network model for handling patterns

The above setup has 3 layer models with configuration reporting system. The three layer model has input size of 1000 region and non region coordinates are 2000 pattern. This setup the given regions are divided by basic element table and region specific modelling. The output each directed values of 12 kernel space 50 convolution model plane.

Figure 3 Convolutional neural network dataset for our proposed input dataset from TensorFlow

The above setup is created from TenorFlow from input dataset given by E-learning model. This network is aimed for measuring bi-directional learning management model. The multiple convolutional networks are created based on attributes and values.

Recommendation Model

Table 2.Association rule mining for support and confidence factor calculations

Association rule is generated by using courses, outcome and assessment patterns. The rule has in the form of $\{-g', g, ..., |g\} = > \{|g-g'|\} \in C, C$ is the course details.

When evaluating above rule we set common attribute factors,

a. The support and confidence factor is assigned to each tuples in the data set. A pattern is created for each subset

b. The number of tuples is satisfied the rule part means we can fix it as interested set values.

c. If learners perceptive the user part can be set by target and assessment privileges

d. If more rules are generated means high support and confidence factor is set

e. The not matching contents or learning elements are grouped and from cluster

f. The target of each students and their recommendation are set by grades for finding prediction factors

g. The rules are marked and recommendation is created based on course sequence, acceptance and completion ratio.

h. The learning system will generate report for each records based on assessment, completion and their active participations

i. if they completed prerequisite courses means that also considered for evaluation and processing

4. Implementation

We used open online courses dataset for experiments. In this case 25,000 learners registration taken from Webinarjam platforms. The GoogleSpread sheet is used for collecting responses and registration. The total number courses are 30 and learner can opt 5 courses. We are taken this record and applied in TensorFlow for pre-processing, association, clusterting and association processing. The grades are set by 0 and 1 and below figure 3 shows that spread sheet registrations.

≣	NUPRO'2020 (F File Edit View I	Responses) 🛧 d Insert Format Data	ව Tools Form Add-ons	Help	Working			
	• • ● ₱ 100%	+ \$ % .0 .00 1	23▼ Default (Ari ▼	10 - B I S	÷ <u>A</u> �. ⊞ 55 -	≡ • ± • I÷ • Þ	• GD 🖬 🕕 🔻 •	Σ
fx	Timestamp							
	A	В	с	D	E	F	G	
1	Timestamp	Email Address	Name of the Participant	Role	Institute Name	Department	Contact Number	NU
2	5/11/2020 11:54:13	vidhva14m@gmail.com	Dr.R.Vidhya	Faculty	E.G.S.Pillay Engineering	Mathematics	9626541707	
3	5/11/2020 11:55:12	kalai4best@gmail.com	K.Kalaivani	Faculty	E.G.S.Pillay Engineering	CSE	9443637775	
4	5/11/2020 11:57:17	ragarajan207@gmail.con	Ragamaliga R	Student	EGS pillay engineering co	B.tech	8098622806	
5	5/11/2020 11:57:33	rashya155@gmail.com	Rashya ayyakannu	Student	Egspec nagapattinam	B.tech(it)	9025564020	
6	5/11/2020 11:58:48	rsekar11973@gmail.com	Sri Abidharshini Sekar	Student	E.G.S.Pillay Engineering	B.Tech-IT	9920767118	
7	5/11/2020 12:01:59	monikadharani19@gmail	Monika umanath	Student	EGS Pillay Engineering C	T	6385939952	
8	5/11/2020 12:05:58	nithyasrigandhi2000@gm	Nithyasri Gandhi	Student	EGS Pillay Engineering C	Information technology	7339635952	
9	5/11/2020 12:13:39	bala@egspec.org	K. Balasubramanian	Faculty	E.G.S Pillay Engineering	CSE	8825980934	
10	5/11/2020 12:14:37	jaslindevaece@gmail.cor	Jaslin deva gifty	Faculty	Egs pillay engineering co	Ece	7502727916	
11	5/11/2020 12:25:20	pavithraasokan2001@gm	Pavithra Asokan	Student	E.G.S. Pillay Engineering	Information Technology	9585663211	
12	5/11/2020 12:26:18	manikandan@egspec.org	Manikandan S	Faculty	EGSPEC	IT	9047902685	
13	5/11/2020 12:29:17	sakthivelcse0@gmail.com	Sakthivel	Student	Egs pillay polytechnic Co	Cse	8489392901	
14	5/11/2020 12:33:14	renugavanitha1904@gma	Renuga.E	Student	E G S Pillay engineering	B.TECH - IT	8754190440	
15	5/11/2020 12:33:48	kowthambala@gmail.con	KOWTHAM .P.R.M	Student	EGS PILLAY POLYTECH	Diploma in computer scie	8220870340	
16	5/11/2020 12:34:58	harish250801@gmail.cor	harishwaran.m	Student	E.g.s pillay ,Anna univers	DCSE3rd year	8270787192	
17	5/11/2020 12:35:07	araveena0308@gmail.co	Rajesh	Faculty	Ega pillay engineering co	Cse	8021330151	
18	5/11/2020 12:35:38	pbavithraselvam@gmail.	Bavithra P. R	Student	Egs Pillai Engineering co	B. Tech - Information Tech	9489681962	
19	5/11/2020 12:35:39	arulmaryroly@gmail.com	Arulmary	Faculty	Egs Pillay arts and science	computer science	8764855028	
20	5/11/2020 12:35:45	priyadharshini171999@g	V.priyadharshini	Student	Egs pillay Engineering co	Cse	6380281231	
21	5/11/2020 12:37:09	asmidha15@gmail.com	Asmidha R	Student	EGS Pillay Arts and Scien	Computer Science	6369845529	
22	5/11/2020 12:38:22	monikadharani19@gmail	Monika umanath	Student	EGS Pillay Engineering C	T	6385939952	

Figure 3 Webinarjam online course registration and response using Spreadsheet

k-means clustering algorithms is applied for dataset. The similar values are grouped based on course details and attributes. Weka 3.8 data science tool is used for clustering. The same cluster are also identified and recorded as version model. The Euclidean distance is applied for measuring similiariy index.

000 Weka Explorer		000	Color Develweika Clusterer Visualize: 12:24:46 - EM (iris)
Preprocess Classify Cluster Associate Select attribu	utes Visualize	Preprocess Classify Clus	X: petallength (Num)
Classifier		Clusterer Choose EM =1 100 -N =1 -5 100 -M 1 0E-6	Colour: Cluster (Nom) 💽 Select Instance 🔹
Classifier output		Cluster mode	Reset Clear Save Jitter
Use training set	\sim	 Use training set 	Plot: iris_clustered
O Supplied test set Set		O Supplied test set Set	2.5 Bendid and a second
Cross-validation Folds 10 Percentage split % 66 Correctly Classified Instances 1 Incorrectly Classified Instances	44 96 % 6 4 %	Classes to clusters evaluation	
More options Kappa statistic Mean absolute error Root mean squar() () Wate Classifian	0.035 Visualize: 12:18:13 - trees id8 k	(Nom) class	1 3.95 6.9 Y
(Nom) class	Y: natalwidth (Num)	Store clusters for visualization	Class colour
	Select Instance	(Ignore attributes)	cluster0 cluster1 cluster2 cluster3
Result list (right-click for s	ave litter	Start Stop	Normal Distribution. Mean = 1.031 StdDev = 0.0464 Clustered Instances
1 View in main win <= 0.6 -> 0.6		12:24:46 - EM	0 50 (33%)
Save result buffe			1 36 (249) 2 54 (369) 3 10 (7%)
Load model			Teg likelihanit -1 00561
Re-evaluate moc			
Visualize classifii Iris-virginica (3.0) Iris-versicolor (3.0/1.0) Visualize tree		Status))+ +
St Visualize margin Pr Visualize thresh	Prsicolor Iris-virginica	ок	Log 🛷 ×

000	The official sectors and the sector sectors and the sector sectors and the sector sectors and the sector sectors and the secto		(annual fame) and fame	a later material transfer
Pre	eprocess Classify Cluster Associate Select attributes Visualize	A	Preprocess Classify Cluster Associate	Select attributes Visualize
Associator		Aprio	rr algorithm is	, applied for each cluster values and finds the cours
Hadvalu		1	Choose 148 -C 0.25 -M 2	
Choose Apriori -N	10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0		Test options	Classifier output Area 1
	Associator output		Use training set	TRAINED OF ECONES 1 2
(Start) (Stop)	Minimum matrix comfidences: 0.9		O Supplied test set Set	Size of the tree : 9
Result list (right-click for optic	Number of cycles performed: 11		Cross-validation Folds 10	
12:31:00 - Apriori	Separated sets of large itensets:		O Percentage split % 66	Time taken to build model: @ seconds
			More entions	=== Stratified cross-validation ===
	Size of set of large itemsets L(1): 20			summery
	Size of set of large itemsets L(2): 17		(Nom) class	Incorrectly Classified Instances 6 4
	Size of set of large itersets 1/3): 6			Kappa statistic 0.94 Mean absolute error 0.035
			Start Stop	Root mean squared error 0.1586 Belaitue absolute error 2.8785 %
	Size of set of large itensets L(4): 1		Result list (right-click for options)	Root relative squared error 33.6353 %
	Beat rules found:		15:57:57 - trees.J48	TOTAL MARKET OF ATTACATIVES AND
	1. adoption-of-the-budget-resolution=y physician-fee-freeze=n 219 =>> Class=democrat		Area 2	Detailed Accuracy By Class
	2. adoption-of-the-budget-resolution-y physician-fee-freeze-n aid-to-nicaraguan-cont			TP Rate FP Rate Precision Recall F-Measure MCC ROC Area FRC Area Class 0.940 0.060 1.000 0.980 0.990 0.955 0.990 0.967 Iris-
	 physician-fee-freeze=n aid-to-nicaraguan-contras=y 211 ==> Class=democrat 210 physician-fee-freeze=n education-spending=n 202 ==> Class=democrat 201 confi(1) 			0.946 0.030 0.946 0.948 0.948 0.910 0.952 0.880 Tris-
	5. physician-fee-freeze=n 247 => Class=democrat 245 conf:(0.99)			Weighted Avg. 0.960 0.920 0.950 0.960 0.960 0.960 0.968 0.924
	6. el-salvador-aid=n Class=democrat 200 ==> aid=to=nicaraguan=contras=y 197 conf 7. el-salvador-aid=n 208 ==> aid=to=nicaraguan=contras=y 204 conf:(0.98)			=== Confusion Matrix ===
	8. adoption-of-the-budget-resolution=y aid-to-micaraguan-contras=y Class=democrat 20			a b c < classified as
	9. el-salvador-aid=n aid-to-nicaraguan-contras=y 204 ==> Class=democrat 197 conf 10. aid-to-nicaraguan-contras=y Class=democrat 218 ==> physician-fee-freeze=n 210			49 1 0 a = Iris-setosa 0 47 3 b = Iris-versicolor
				0 2 48 c = Iris-wirginica
				1
1	1414 JAIN			· · · · · · · · · · · · · · · · · · ·
Status			Status	
OK	Log 🛷 ×0		ОК	Log 💉 X O
		5		

Table 3.Result for after applying association rule mining support and confidence value

Course	Course	Registered	Support	Confidence	Coverage	Without	With
ID	Details	Details				Clustering	Clustering
NUPROx	Programming	12000	0.01	0.01	0.02	0.453	0.345
NDTA	Designing	10000	0.01	0.01	0.05	0.546	0.453
Python	Programming	5000	0.01	0.01	0.15	0.762	0.426
Yoga	Meditation	23000	0.01	0.01	0.10	0.912	0.725
CourseX	Event	34000	0.01	0.01	0.15	0.982	0.837

The above table 2 shows that association rule mining results with and without clustering results using TensorFlow. The similar courses are grouped and reduce the computation time. If multiple courses are selected by single learners means that also grouped. Based on clustering we can easily fix support and confidence values. The performance can be analyzed by using accuracy and prediction with respect to time and precision.

Accuracy = (Tp + Tn) / (Tp + Tn + Fp + Fn) and Precision = Tp / (Tp + Fp)

Whereas, Recall = Tp / (Tn+Fn) so

Prediction_Factor = (2 x Recall x Precision) / (Recall + Accuracy + (Precision))

P and N – Positive and Negative factor of dataset values for support and confidence values. The performance is compared with various existing methods by using support and confidence factor as 0.01.

Table 4.Comparison table with various factors using models

Model	Accuracy	Precision	Recall	Prediction Factor
Network Model	0.56	0.61	0.76	0.45
SVM classification	0.75	0.78	0.65	0.47
Cluster Group	0.81	0.78	0.81	0.67
Kernel Space	0.67	0.92	0.92	0.55
Granular Model	0.75	0.98	0.67	0.72
Proposed Model	0.34	0.54	0.55	0.87

The above results is taken as single dataset input and compared the results using various model. Our method has good accuracy factor as 87% and compared with existing model it is good.

Figure 4: Proposed model prediction factor

5. Conclusion

In this paper, we used intelligent and deep learning method for calculating prediction factor of online learning platforms. The similarity factor is calculated and clustering method is applied for grouping the same groups. The association rule mining is used for finding support and confidence factors. In our experiments, we used Google TensorFlow for analyzing the performance and compared the results with existing methodology. The prediction accuracy factor rate is achieved as 87% and it is high compared with other model. The results are accounted by using course group, similarity index, assessment and clustering. In future this model can be used for different online portals and social media.

References:

- Thanh-Nhan, H, Nguyen and Thai-Nghe, M., Methods for building course recommendation systems, In 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE), 2016, pp. 163-168
- Tewari, A. Kumar and Barman A., Book recommendation system based on combine features of content based filtering, collaborative filtering and association rule mining, In 2014 IEEE International Advance Computing Conference (IACC), 2014, pp. 500-503.
- 3. Romero, C and Ventura, S, Educational data mining: A survey from 1995 to 2005, Expert Systems with Applications, vol. 33, no. 1, pp. 135-146, 2007. Available: 10.1016/j.eswa.2006.04.005.

- 4. Manikandan, S, Chinnadurai, M., Intelligent and Deep Learning Approach OT Measure E-Learning Content in Online Distance Education, The Online Journal of Distance Education and e-Learning, vol.7, issue 3, July 2019, ISSN: 2147-6454.
- Adomavicius, G and Tuzhilin, A., Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering, 2018
- 6. Chung, J, Gulcehre, C, K. Cho, Bengio, Y.,, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, arXiv Prepr. arXiv1412.3555, 2014.
- 7. Tang, Qin, Liu, T, Document Modeling with Gated Recurrent Neural Network for Sentiment Classification, In Proceedings of the 2015 conference on empirical methods in natural language processing, 2015, pp. 1422–1432.
- 8. Kim, Y., Convolutional Neural Networks for Sentence Classification, arXiv Prepr. arXiv1408.5882., 2014.
- 9. S.Manikandan, M.Chinnadurai, D.Maria Manuel Vianny and D.Sivabalaselvamani, Real Time Traffic Flow Prediction and Intelligent Traffic Control from Remote Location for Large-Scale Heterogeneous Networking using TensorFlow, International Journal of Future Generation Communication and Networking, ISSN: 2233-7857, Vol.13, No.1, (2020), pp.1006-1012
- Baziotis, N. Pelekis, C. Doulkeridis, DataStories at SemEval2017 Task 4: Deep LSTM with Attention for Message-level and Topicbased Sentiment Analysis, Proc. 11th Int. Work. Semant. Eval., pp. 747– 754, 2017.
- Deriu, M. Gonzenbach, F. Uzdilli, A. Lucchi, V. De Luca, M. Jaggi, SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision, Proc. 10th Int. Work. Semant. Eval., pp. 1124–1128, 2016.
- Wang, L.-C. Yu, K. R. Lai, X. Zhang, Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model, Proc. 54th Annu. Meet. Assoc. Comput. Linguist. (Volume 2 Short Pap., Vol 2, pp. 225–230, 2016.
- 13. Lei, H. Joshi, R. Barzilay, T. Jaakkola, K. Tymoshenko, A. Moschitti, L. Marquez, Semi-supervised Question Retrieval with Gated Convolution, arXiv Prepr. arXiv1512.05726, 2015.
- 14. Bojanowski, E. Grave, A. Joulin, eta T. Mikolov, Enriching Word Vectors with Subword Information, Trans. Assoc. Comput. Linguist., Vol 5, pp. 135–146, 2016.
- Manikandan S, Chinnadurai M, Thiruvenkatasuresh M.P, Sivakumar M., Prediction of Human Motion Detection in Video Surveillance Environment Using Tensor Flow, International Journal of Advanced Science and Technology, 29(05), 2791 – 2798